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Preface

Software developers have always used tools to perform their work. In the earliest
days of the discipline, the tools provided basic compilation and assembly function-
ality. Then came tools and environments that increasingly provided sophisticated
data about the software under development. Around the turn of the millennium, the
systematic and large-scale accumulation of software engineering data opened up
new opportunities for the creation of tools that infer information estimated to be
helpful to developers in a given context. This new type of software development
tools came to be known as recommendation systems, in parallel with similar
developments in other domains such as the e-commerce.

Recommendation systems in software engineering (RSSEs) share commonalities
with conventional recommendation systems: mainly in their usage model, the
usual reliance on data mining, and in the predictive nature of their functionality.
Beyond these superficial traits, recommendation systems in software engineering
are generally different from those in other domains. Traditional recommendation
systems are heavily user centric. Users generally create the data items directly,
e.g., in the form of ratings. An important challenge for traditional recommendation
systems is to infer and model evolving user preferences and needs. In contrast,
the major challenge for designing RSSEs is to automatically interpret the highly
technical data stored in software repositories.

Realizing that some of the important knowledge that is necessary to build
recommendation systems in a technical domain would not be readily found in
existing books and other resources on conventional recommendation systems, we
set about to capture as much of this knowledge as possible in this book.

About This Book

This book has been a community effort. Prospective authors submitted chapter
proposals to an open call for contributions. The proposals and later the selected
chapters were reviewed by the editors over four review iterations. In addition,
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the authors participating in this book were asked to review chapters by other
contributors.

A unique aspect of this book was the RSSE Hamburg Meeting in April 2013.
The contributing authors were invited to this 2-day event to present their chapter
ideas, discuss the RSSE state of the art, and participate in editing and networking
sessions. The meeting greatly helped to unify the presentation and content of this
book and to further consolidate the RSSE community effort. The meeting has
been part of a series of events that started with a workshop on software analysis
for recommendation systems at McGill University’s Bellairs Research Station in
Barbados in 2008 and follow-up workshops at the ACM SIGSOFT International
Symposium on the Foundations of Software Engineering in 2008 and at the
ACM/IEEE International Conference on Software Engineering in 2010 and 2012.
The last workshop in 2012 had over 70 participants, which shows a large interest in
the topic.

Structure and Content

This book collects, structures, and formalizes knowledge on recommendation
systems in software engineering. It adopts a pragmatic approach with an explicit
focus on system design, implementation, and evaluation. The book is intended to
complement existing texts on recommender systems, which cover algorithms and
traditional application domains.

The book consists of three parts:

Part I: Techniques This part introduces basic techniques for building recom-
menders in software engineering, including techniques not only to collect and
process software engineering data but also to present recommendations to users
as part of their workflow.

Part II: Evaluation This part summarizes methods and experimental designs to
evaluate recommendations in software engineering.

Part III: Applications This part describes needs, issues, and solution concepts
involved in entire recommendation systems for specific software engineering
tasks, focusing on the engineering insights required to make effective recom-
mendations.

Target Audience

The book contains knowledge relevant to software professionals and to computer
science or software engineering students with an interest in the application of
recommendation technologies to highly technical domains, including:
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• senior undergraduate and graduate students working on recommendation systems
or taking a course in software engineering or applied data mining;

• researchers working on recommendation systems or on software engineering
tools;

• software engineering practitioners developing recommendation systems or simi-
lar applications with predictive functionality; and

• instructors teaching a course on recommendation systems, applied data mining,
or software engineering. The book will be particularly suited to graduate courses
involving a project component.

Website and Resources

This book has a webpage at rsse.org/book, which is part of the RSSE community
portal rsse.org. This webpage contains free supplemental materials for readers of
this book and anyone interested in recommendation systems in software engineer-
ing, including:

• lecture slides, datasets, and source code;
• an archive of previous RSSE workshops and meetings;
• a collection of people, papers, groups, and tools related to RSSE. Please contact

any of the editors if you would like to be added or to suggest additional resources.

In addition to the RSSE community, there are several other starting points.

• The article “Recommendation Systems for Software Engineering,” IEEE Soft-
ware, 27(4):80–86, July–August 2010, provides a short introduction to the topic.

• The latest research on RSSE systems is regularly published and presented at
the International Conference on Software Engineering (ICSE), International
Symposium on the Foundations of Software Engineering (FSE), International
Conference on Automated Software Engineering (ASE), Working Conference on
Mining Software Repositories (MSR), and International Conference on Software
Maintenance (ICSM).

• Many researchers working on RSSE systems meet at the International Workshop
on Recommendation Systems for Software Engineering, which is typically held
every other year.

• The ACM Conference on Recommender Systems (RecSys) covers recommender
research in general and in many different application domains, not just software
engineering.

• Several books on building conventional recommendation systems have been writ-
ten. To get started, we recommend “Recommender Systems: An Introduction”
(2010) by Jannach, Zanker, Felfernig, and Friedrich.

http://rsse.org
http://rsse.org/book
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Chapter 1
An Introduction to Recommendation Systems
in Software Engineering

Martin P. Robillard and Robert J. Walker

Abstract Software engineering is a knowledge-intensive activity that presents
many information navigation challenges. Information spaces in software engineer-
ing include the source code and change history of the software, discussion lists
and forums, issue databases, component technologies and their learning resources,
and the development environment. The technical nature, size, and dynamicity of
these information spaces motivate the development of a special class of applications
to support developers: recommendation systems in software engineering (RSSEs),
which are software applications that provide information items estimated to be
valuable for a software engineering task in a given context. In this introduction, we
review the characteristics of information spaces in software engineering, describe
the unique aspects of RSSEs, present an overview of the issues and considerations
involved in creating, evaluating, and using RSSEs, and present a general outlook
on the current state of research and development in the field of recommendation
systems for highly technical domains.

1.1 Introduction

Despite steady advancement in the state of the art, software development remains a
challenging and knowledge-intensive activity. Mastering a programming language
is no longer sufficient to ensure software development proficiency. Developers are
continually introduced to new technologies, components, and ideas. The systems on
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which they work tend to keep growing and to depend on an ever-increasing array of
external libraries and resources.

We have long since reached the point where the scale of the information space—
facing a typical developer easily exceeds an individual’s capacity to assimilate it.
Software developers and other technical knowledge workers must now routinely
spend a large fraction of their working time searching for information, for example,
to understand existing code or to discover how to properly implement a feature.
Often, the timely or serendipitous discovery of a critical piece of information can
have a dramatic impact on productivity [6].

Although rigorous training and effective interpersonal communication can help
knowledge workers orient themselves in a sea of information, these strategies are
painfully limited by scale. Data mining and other knowledge inference techniques
are among the ways to provide automated assistance to developers in navigating
large information spaces. Just as recommendation systems for popular e-commerce
Web sites can help expose users to interesting items previously unknown to
them [15], recommendation systems can be used in technical domains to help
surface previously unknown information that can directly assist knowledge workers
in their task.

Recommendation systems in software engineering (RSSEs) are now emerging
to assist software developers in various activities—from reusing code to writing
effective bug reports.

1.2 Information Spaces in Software Engineering

When developers join a project, they are typically faced with a landscape [4]
of information with which they must get acquainted. Although this information
landscape will vary according to the organization and the development process
employed, the landscape will typically involve information from a number of
sources.

The project source code. In the case of large software systems, the codebase itself
will already represent a formidable information space. According to Ohloh.net,
in October 2013 the source code of the Mozilla Firefox Web browser totaled close
to 10 million lines written in 33 different programming languages. Understanding
source code, even at a much smaller scale, requires answering numerous different
types of questions, such as “where is this method called?” [19]. Answering
such structural questions can require a lot of navigation through the project
source code [11, 17], including reading comments and identifiers, following
dependencies, and abstracting details.

The project history. Much knowledge about a software project is captured in
the version control system (VCS) for the project. Useful information stored
in a VCS includes systematic code change patterns (e.g., files A and B were
often changed together [22]), design decisions associated with specific changes
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(stored in commit logs), and, more indirectly, information about which developers
have knowledge of which part of the code [13]. Unfortunately, the information
contained in a VCS is not easily searchable or browsable. Useful knowledge
must often be inferred from the VCS and other repositories, typically by using a
combination of heuristics and data mining techniques [21].

Communication archives. Forums and mailing lists, often used for informal
communication among developers and other stakeholders of a project, contain
a wealth of knowledge about a system [3]. Communication is also recorded in
issue management systems and code review tools.

The dependent APIs and their learning resources. Most modern software devel-
opment relies on reusable software assets (frameworks and libraries) exported
through application programming interfaces (APIs). Like the project source code
itself, APIs introduce a large, heavily structured information space that devel-
opers must understand and navigate to complete their tasks. In addition, large
and popular APIs typically come with extensive documentation [5], including
reference documentation, user manuals, and code examples.

The development environment. The development environment for a software sys-
tem includes all the development tools, scripts, and commands used to build and
test the system. Such an environment can quickly become complex to the point
where developers perform suboptimally simply because they are unaware of the
tools and commands at their disposal [14].

Interaction traces. It is now common practice for many software applications to
collect user interaction data to improve the user experience. User interaction data
consists of a log of user actions as they visit a Web site or use the various com-
ponents of the user interface of a desktop or mobile application [8]. In software
engineering, this collection of usage data takes the form of the monitoring of
developer actions as they use an integrated development environment such as
Eclipse [10].

Execution traces. Data collected during the execution of a software system [16,
Table 3] also constitutes a source of information that can be useful to software
engineers, and in particular to software quality assurance teams. This kind of
dynamically collected information includes data about the state of the system, the
functions called, and the results of computation at different times in the execution
of the system.

The web. Ultimately, some of the knowledge sought by or useful to developers
can be found in the cloud, hosted on servers unrelated to a given software
development project. For example, developers will look for code examples on
the web [2], or visit the StackOverflow Questions-and-Answers (Q&A) site in the
hopes of finding answers to common programming problems [12]. The problem
with the cloud is that it is often difficult to assess the quality of the information
found in some Web sites, and near impossible to estimate what information exists
beyond the results of search queries.

Together, the various sources of data described above create the information
space that software developers and other stakeholders of a software project will
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face. Although, in principle, all of this information is available to support ongoing
development and other engineering activities, in reality it can be dispiritingly hard
to extract the answer to a specific information need from software engineering
data, or in some cases to even know that the answer exists. A number of aspects
of software engineering data make discovering and navigating information in this
domain particularly difficult.

1. The sheer amount of information available (the information overload problem),
while not unique to software engineering, is an important factor that only grows
worse with time. Automatically collected execution traces and interaction traces,
and the cumulative nature of project history data, all contribute to making this
challenge more acute.

2. The information associated with a software project is heterogeneous. While a
vast array of traditional recommender systems can rely on the general concepts
of item and rating [15], there is no equivalent universal baseline in software
engineering. The information sources described above involve a great variety of
information formats, including highly structured (source code), semi-structured
(bug reports), and loosely structured (mailing lists, user manuals).

3. Technical information is highly context-sensitive. To a certain extent, most
information is context-sensitive; for example, to interpret a restaurant review,
it may be useful to know about the expectations and past reviews of the author.
However, even in the absence of such additional context, it will still be possible
to construct a coarse interpretation of the information, especially if the restaurant
in question is either very good or very bad. In contrast, software engineering
data can be devoid of meaning without an explicit connection to the underlying
process. For example, if a large amount of changes are committed to a system’s
version control system on Friday afternoons, it could mean either that team
members have chosen that time to merge and integrate their changes or that a
scheduled process updates the license headers at that time.

4. Software data evolves very rapidly. Ratings for movies can have a useful lifetime
measured in decades. Restaurant and product reviews are more ephemeral, but
could be expected to remain valid for at least many months. In contrast, some
software data experiences high churn, meaning that it is modified in some cases
multiple times a day [9]. For example, the Mozilla Firefox project receives
around 4,000 commits per month, or over 100 per day. Although not all software
data gets invalidated on a daily basis (APIs can remain stable for years), the
highly dynamic nature of software means that inferred facts must, in principle,
continually be verified for consistency with the underlying data.

5. Software data is partially generated. Many software artifacts are the result of a
combination of manual and automated processes and activities, often involving
a complex cycle of artifact generation with manual feedback. Examples include
the writing of source code with the help of refactoring or style-checking tools,
the authoring of bug reports in which the output or log of a program is copied
and pasted, and the use of scripts to automatically generate mailing list messages,
for example, when a version of the software is released. These complex and
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semiautomated processes can be contrasted, for example, with the authoring of
reviews by customers who have bought a certain product. In the latter case, the
process employed for generating the data is transparent, and interpreting it will
be a function of the content of the item and the attributes of the author; the
data generation process would not normally have to be taken into account to
understand the review.

Finally, in addition to the challenging attributes of software engineering data that
we noted above, we also observe that many problems in software engineering are
not limited by data, but rather by computation. Consider a problem like change
impact analysis [1, 20]: the basic need of the developer—to determine the impact
of a proposed change—is clear, but in general it is impossible to compute a precise
solution. Thus, in software engineering and other technical domains, guidance in the
form of recommendations is needed not only to navigate large information spaces
but also to deal with formally undecidable problems, or problems where no precise
solutions can be computed in a practical amount of time.

1.3 Recommendation Systems in Software Engineering

In our initial publication on the topic, we defined a recommendation system for
software engineering to be [18, p.81]:

. . . a software application that provides information items estimated to be valuable for a
software engineering task in a given context.

With the perspective of an additional four years, we still find this definition to be
the most useful for distinguishing RSSEs from other software engineering tools.
RSSEs’ focus is on providing information as opposed to other services such as
build or test automation. The reference to estimation distinguishes RSSEs from
fact extractors, such as classical search tools based on regular expressions or the
typical cross-reference tools and call-graph browsers found in modern integrated
development environments. At the same time, estimation is not necessarily predic-
tion: recommendation systems in software engineering need not rely on the accurate
prediction of developer behavior or system behavior. The notion of value captures
two distinct aspects simultaneously: (1) novelty and surprise, because RSSEs
support discovering new information and (2) familiarity and reinforcement, because
RSSEs support the confirmation of existing knowledge. Finally, the reference to a
specific task and context distinguishes RSSEs from generic search tools, e.g., tools
to help developers find code examples.

Our definition of RSSEs is, however, still broad and allows for great variety in
recommendation support for developers. Specifically, a large number of different
information items can be recommended, including the following:
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Source code within a project. Recommenders can help developers navigate the
source code of their own project, for example, by attempting to guess the areas
of the project’s source code a developer might need, or want, to look at.

Reusable source code. Other recommenders in software engineering attempt to
help users discover the API elements (such as classes, functions, or scripts) that
can help to complete a task.

Code examples. In some cases, a developer may know which source code or API
elements are required to complete a task, but may ignore how to correctly employ
them. As a complement to reading textual documentation, recommendation
systems can also provide code examples that illustrate the use of the code
elements of interest.

Issue reports. Much knowledge about a software project can reside in its issue
database. When working on a piece of code or attempting to solve a problem,
recommendation systems can discover related issue reports.

Tools, commands, and operations. Large software development environments are
getting increasingly complex, and the number of open-source software devel-
opment tools and plug-ins is unbounded. Recommendation systems can help
developers and other software engineers by recommending tools, commands, and
actions that should solve their problem or increase their efficiency.

People. In some situations recommendation systems can also help finding the best
person to assign a task to, or the expert to contact to answer a question.

Although dozens of RSSEs have been built to provide some of the recom-
mendation functionality described above, no reference architecture has emerged
to-date. The variety in RSSE architectures is likely a consequence of the fact that
most RSSEs work with a dominant source of data, and are therefore engineered
to closely integrate with that data source. Nevertheless, the major design concerns
for recommendation systems in general are also found in the software engineering
domain, each with its particular challenges.

Data preprocessing. In software engineering, a lot of preprocessing effort is
required to turn raw character data into a sufficiently interpreted format. For
example, source code has to be parsed, commits have to be aggregated, and
software has to be abstracted into dependency graphs. This effort is usually
needed in addition to more traditional preprocessing tasks such as detecting
outliers and replacing missing values.

Capturing context. While in traditional domains, such as e-commerce, recom-
mendations are heavily dependent on user profiles, in software engineering, it is
usually the task that is the central concept related to recommendations. The
task context is our representation of all information about the task to which
the recommendation system has access in order to produce recommendations.
In many cases, a task context will consist of a partial view of the solution to the
task: for example, some source code that a developer has written, an element
in the code that a user has selected, or an issue report that a user is reading.
Context can also be specified explicitly, in which case the definition of the context
becomes fused with that of a query in a traditional information retrieval system.
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In any case, capturing the context of a task to produce recommendations involves
somewhat of a paradox: the more precise the information available about the
task is, the more accurate the recommendations can be, but the less likely the
user can be expected to need recommendations. Put another way, a user in great
need of guidance may not be able to provide enough information to the system to
obtain usable recommendations. For this reason, recommendation systems must
take into account that task contexts will generally be incomplete and noisy.

Producing recommendations. Once preprocessed data and a sufficient amount of
task context are available, recommendation algorithms can be executed. Here
the variety of recommendation strategies is only bounded by the problem space
and the creativity of the system designer. However, we note that the traditional
recommendation algorithms commonly known as collaborative filtering are only
seldom used to produce recommendations in software engineering.

Presenting the recommendations. In its simplest form, presenting a recommenda-
tion boils down to listing items of potential interest—functions, classes, code
examples, issue reports, and so on. Related to the issue of presentation, however,
lies the related question of explanation: why was an item recommended? The
answer to this question is often a summary of the recommendation strategy:
“average rating,” “customers who bought this item also bought,” etc. In software
engineering, the conceptual distance between a recommendation algorithm and
the domain familiar to the user is often much larger than in other domains. For
example, if a code example is recommended to a user because it matches part
of the user’s current working code, how can this matching be summarized? The
absence of a universal concept such as ratings means that for each new type of
recommendation, the question of explanation must be revisited.

1.4 Overview of the Book

In the last decade, research and development on recommendation systems has seen
important advances, and the knowledge relevant to recommendation systems now
easily exceeds the scope of a single book. This book focuses on the development
of recommendation systems for technical domains and, in particular, for software
engineering. The topic of recommendation systems in software engineering is broad
to the point of multidisciplinarity: it requires background in software engineering,
data mining and artificial intelligence, knowledge modeling, text analysis and
information retrieval, human–computer interaction, as well as a firm grounding in
empirical research methods. This book was designed to present a self-contained
overview that includes sufficient background in all of the relevant areas to allow
readers to quickly get up to speed on the most recent developments, and to
actively use the knowledge provided here to build or improve systems that can take
advantage of large information spaces that include technical content.

Part I of the book covers the foundational aspects of the field. Chapter 2
presents an overview of the general field of recommendation systems, including
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a presentation of the major classes of recommendation approaches: collaborative
filtering, content-based recommendations, and knowledge-based recommendations.
Many recommendation systems rely on data mining algorithms; to help readers ori-
ent themselves in the space of techniques available to infer facts from large data sets,
Chap. 3 presents a tutorial on popular data mining techniques. In contrast, Chap. 4
examines how recommendation systems can be built without data mining, by relying
instead on carefully designed heuristics. To-date, the majority of RSSEs have
targeted the recommendation of source code artifacts; Chap. 5 is an extensive review
of recommendation systems based on source code that includes many examples of
RSSEs. Moving beyond source code, we examine two other important sources
of data for RSSE: bug reports in Chap. 6, and user interaction data in Chap. 7.
We conclude Part I with two chapters on human–computer interaction (HCI) topics:
the use of developer profiles to take personal characteristics into account, in Chap. 8,
and the design of user interfaces for delivering recommendations, in Chap. 9.

Now that the field of recommendation systems has matured, many of the basic
ideas have been tested, and further progress will require careful, well-designed
evaluations. Part II of the book is dedicated to the evaluation of RSSEs with four
chapters on the topic. Chapter 10 is a review of the most important dimensions and
metrics for evaluating recommendation systems. Chapter 11 focuses on the problem
of creating quality benchmarks for evaluating recommendation systems. The last
two chapters of Part II describe two particularly useful types of studies for evaluating
RSSEs: simulation studies that involve the execution of the RSSE (or of some of its
components) in a synthetic environment (Chap. 12), and field studies, which involve
the development and deployment of an RSSE in a production setting (Chap. 13).

Part III of the book takes a detailed look at a number of specific applications
of recommendation technology in software engineering. By discussing RSSEs in an
end-to-end fashion, the chapters in Part III provide not only a discussion of the major
concerns and design decisions involved in developing recommendation technology
in software engineering but also insightful illustrations of how computation can
assist humans in solving a wide variety of complex, information-intensive tasks.
Chapter 14 discusses the techniques underlying the recommendation of reusable
source code elements. Chapters 15 and 16 present two different approaches to
recommend transformations to an existing codebase. Chapter 17 discusses how
recommendation technology can assist requirements engineering, and Chap. 18
focuses on recommendations that can assist tasks involving issue reports, such as
issue triage tasks. Finally, Chap. 19 shows how recommendations can assist with
product line configuration tasks.

1.5 Outlook

As the content of this book shows, the field of recommendation systems in software
engineering has already benefited from much effort and attention from researchers,
tool developers, and organizations interested in leveraging large collections of
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software artifacts to improve software engineering productivity. We conclude this
introduction with a look at the current state of the field and the road ahead.

Most of the work on RSSEs to-date has focused on the development of algorithms
for processing software data. Much of this work has proceeded in the context of the
rapid progress in techniques to mine software repositories. As a result, developers
of recommendation systems in software engineering can now rely on a mature body
of knowledge on the automated extraction and interpretation of software data [7].
At the same time, developments in RSSEs had, up to recently, proceeded somewhat
in isolation of the work on traditional recommender systems. However, the parallel
has now been recognized, which we hope will lead to a rapid convergence in
terminology and concepts that should facilitate further exchange of ideas between
the two communities.

Although many of the RSSEs mentioned in this book have been fully imple-
mented, much less energy has been devoted to research on the human aspects
of RSSEs. For a given RSSE, simulating the operation of a recommendation
algorithm can allow us to record very exactly how the algorithm would behave in
a large number of contexts, but provides no clue as to how users would react to
the recommendations (see Part II). For this purpose, only user studies can really
provide an answer. The dearth of user studies involving recommendation systems
in software engineering can be explained and justified by their high cost, which
would not always be in proportion to the importance of the research questions
involved. However, the consequence is that we still know relatively little about how
to best integrate recommendations into a developer’s workflow, how to integrate
recommendations from multiple sources, and more generally how to maximize the
usefulness of recommendation systems in software engineering.

An important distinction between RSSEs and traditional recommendation sys-
tems is that RSSEs are task-centric, as opposed to user-centric. In many recom-
mendation situations, we know much more about the task than about the developer
carrying it out. This situation is reflected in the limited amount of personalization
in RSSEs. It remains an open question whether personalization is necessary or even
desirable in software engineering. As in many cases, the accumulation of personal
information into a user (or developer) profile has important privacy implications.
In software engineering, the most obvious one is that this information could be
directly used to evaluate developers. A potential development that could lead to
more personalization in recommender systems for software engineering is the
increasingly pervasive use of social networking in technical domains. Github is
already a platform where the personal characteristics of users can be used to navigate
information. In this scenario, we would see a further convergence between RSSEs
and traditional recommenders.

Traditional recommendation systems provide a variety of functions [15,
Sect. 1.2]. Besides assisting the user in a number of ways, these functions
also include a number of benefits to other stakeholders, including commercial
organizations. For example, recommendation systems can help increase the number
of items sold, sell more diverse items, and increase customer loyalty. Although,
in the case of RSSEs developed by commercial organizations, these functions
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can be assumed, we are not aware of any research that focuses on assessing the
nontechnical virtues of RSSEs. At this point, most of the work on assessing RSSEs
has focused on the support they directly provide to developers.

1.6 Conclusion

The information spaces encountered in software engineering contexts differ
markedly from those in nontechnical domains. Five aspects—quantity, hetero-
geneity, context-sensitivity, dynamicity, and partial generation—all contribute to
making it especially difficult to analyze, interpret, and assess the quality of software
engineering data. The computational intractability of many questions that surface
in software engineering only add to the complexity. Those are the challenges facing
organizations that wish to leverage their software data.

Recommendation systems in software engineering are one way to cope with
these challenges. At heart, RSSEs must be designed to acknowledge the realities
of the tasks, of the people, and of the organizations involved. And while developing
effective RSSEs gives rise to new challenges, we have already learned a great deal
about the techniques to create them, the methodologies to evaluate them, and the
details of their application.
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Chapter 2
Basic Approaches in Recommendation Systems

Alexander Felfernig, Michael Jeran, Gerald Ninaus, Florian Reinfrank,
Stefan Reiterer, and Martin Stettinger

Abstract Recommendation systems support users in finding items of interest.
In this chapter, we introduce the basic approaches of collaborative filtering, content-
based filtering, and knowledge-based recommendation. We first discuss principles
of the underlying algorithms based on a running example. Thereafter, we provide
an overview of hybrid recommendation approaches which combine basic variants.
We conclude this chapter with a discussion of newer algorithmic trends, especially
critiquing-based and group recommendation.

2.1 Introduction

Recommendation systems [7,33] provide suggestions for items that are of potential
interest for a user. These systems are applied for answering questions such as which
book to buy? [39], which website to visit next? [49], and which financial service
to choose? [19]. In software engineering scenarios, typical questions that can be
answered with the support of recommendation systems are, for example, which
software changes probably introduce a bug? [3], which requirements to implement
in the next software release? [25], which stakeholders should participate in the
upcoming software project? [38], which method calls might be useful in the current
development context? [59], which software components (or APIs) to reuse? [45],
which software artifacts are needed next? [40], and which effort estimation methods
should be applied in the current project phase? [50]. An overview of the application
of different types of recommendation technologies in the software engineering
context can be found in Robillard et al. [53].
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The major goal of this book chapter is to shed light on the basic properties of
the three major recommendation approaches of (1) collaborative filtering [12,26,36],
(2) content-based filtering [49], and (3) knowledge-based recommendation [5, 16].
Starting with the basic algorithmic approaches, we exemplify the functioning of the
algorithms and discuss criteria that help to decide which algorithm should be applied
in which context.

The remainder of this chapter is organized as follows. In Sect. 2.2 we give an
overview of collaborative filtering recommendation approaches. In Sect. 2.3 we
introduce the basic concepts of content-based filtering. We close our discussion of
basic recommendation approaches with the topic of knowledge-based recommen-
dation (see Sect. 2.4). In Sect. 2.5, we explain example scenarios for integrating the
basic recommendation algorithms into hybrid ones. Hints for practitioners interested
in the development of recommender applications are given in Sect. 2.6. A short
overview of further algorithmic approaches is presented in Sect. 2.7.

2.2 Collaborative Filtering

The item-set in our running examples is software engineering-related learning
material offered, for example, on an e-learning platform (see Table 2.1). Each
learning unit is additionally assigned to a set of categories, for example, the learning
unit l1 is characterized by Java and UML.

Collaborative filtering [12, 36, 56] is based on the idea of word-of-mouth
promotion: the opinion of family members and friends plays a major role in personal
decision making. In online scenarios (e.g., online purchasing [39]), family members
and friends are replaced by the so-called nearest neighbors (NN) who are users
with a similar preference pattern or purchasing behavior compared to the current
user. Collaborative filtering (see Fig. 2.1) relies on two different types of background
data: (1) a set of users and (2) a set of items. The relationship between users and
items is primarily expressed in terms of ratings which are provided by users and
exploited in future recommendation sessions for predicting the rating a user (in our
case user Ua) would provide for a specific item. If we assume that user Ua currently
interacts with a collaborative filtering recommendation system, the first step of the
recommendation system is to identify the nearest neighbors (users with a similar
rating behavior compared to Ua) and to extrapolate from the ratings of the similar
users the rating of user Ua.

The basic procedure of collaborative filtering can best be explained based on
a running example (see Table 2.2) which is taken from the software engineering
domain (collaborative recommendation of learning units). Note that in this chapter
we focus on the so-called memory-based approaches to collaborative filtering
which—in contrast to model-based approaches—operate on uncompressed versions
of the user/item matrix [4]. The two basic approaches to collaborative filtering are
user-based collaborative filtering [36] and item-based collaborative filtering [54].
Both variants are predicting to which extent the active user would be interested in
items which have not been rated by her/him up to now.
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Table 2.1 Example set of software engineering-related learning units (LU). This
set will be exploited for demonstration purposes throughout this chapter. Each
of the learning units is additionally characterized by a set of categories (Java,
UML, Management, Quality), for example, the learning unit l1 is assigned to the
categories Java and UML

Learning unit Name Java UML Management Quality

l1 Data Structures in Java yes yes
l2 Object Relational Mapping yes yes
l3 Software Architectures yes
l4 Project Management yes yes
l5 Agile Processes yes
l6 Object Oriented Analysis yes yes
l7 Object Oriented Design yes yes
l8 UML and the UP yes yes
l9 Class Diagrams yes
l10 OO Complexity Metrics yes

Fig. 2.1 Collaborative filtering (CF) dataflow. Users are rating items and receive recommenda-
tions for items based on the ratings of users with a similar rating behavior—the nearest neighbors
(NN)

User-Based Collaborative Filtering. User-based collaborative filtering identifies
the k-nearest neighbors of the active user—see Eq. (2.1)1—and, based on these
nearest neighbors, calculates a prediction of the active user’s rating for a specific
item (learning unit). In the example of Table 2.2, user U2 is the nearest neighbor
(k D 1) of user Ua, based on Eq. (2.1), and his/her rating of learning unit l3 will
be taken as a prediction for the rating of Ua (rating D 3.0). The similarity between
a user Ua (the current user) and another user Ux can be determined, for example,
based on the Pearson correlation coefficient [33]; see Eq. (2.1), where LUc is the set
of items that have been rated by both users, r˛;li is the rating of user ˛ for item li , and

1For simplicity we assume k D 1 throughout this chapter.
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Table 2.2 Example collaborative filtering data structure (rating matrix): learning
units (LU) versus related user ratings (we assume a rating scale of 1–5)

LU Name U1 U2 U3 U4 Ua

l1 Data Structures in Java 5.0 4.0
l2 Object Relational Mapping 4.0
l3 Software Architectures 3.0 4.0 3.0
l4 Project Management 5.0 5.0 4.0
l5 Agile Processes 3.0
l6 Object Oriented Analysis 4.5 4.0 4.0
l7 Object Oriented Design 4.0
l8 UML and the UP 2.0
l9 Class Diagrams 3.0
l10 OO Complexity Metrics 5.0 3.0

average rating (rα ) 4.33 3.625 4.0 3.75 3.67

Table 2.3 Similarity between
user Ua and the users Uj ¤ Ua

determined based on Eq. (2.1).
If the number of commonly
rated items is below 2, no sim-
ilarity between the two users is
calculated

U1 U2 U3 U4

Ua – 0.97 0.70 –

r˛ is the average rating of user ˛. Similarity values resulting from the application of
Eq. (2.1) can take values on a scale of Œ�1; : : : ;C1�.

similarity.Ua; Ux/ D
P

li2LUc
.ra;li � ra/ � .rx;li � rx/

qP
li2LUc

.ra;li � ra/2 �
qP

li2LUc
.rx;li � rx/2

(2.1)

The similarity values for Ua calculated based on Eq. (2.1) are shown in Table 2.3.
For the purposes of our example we assume the existence of at least two items per
user pair (Ui , Uj ), for i ¤ j , in order to be able to determine a similarity. This
criterion holds for users U2 and U3.

A major challenge in the context of estimating the similarity between users is
the sparsity of the rating matrix since users are typically providing ratings for only
a very small subset of the set of offered items. For example, given a large movie
dataset that contains thousands of entries, a user will typically be able to rate only
a few dozens. A basic approach to tackle this problem is to take into account the
number of commonly rated items in terms of a correlation significance [30], i.e.,
the higher the number of commonly rated items, the higher is the significance of
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Table 2.4 User-based collaborative filtering-based recommendations (predic-
tions) for items that have not been rated by user Ua up to now

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

U2 – – 3.0 5.0 – 4.5 – 2.0 – –
Ua – – – 4.0 – 4.0 – – 3.0
prediction(Ua; li) – – 3.045 – – – – 2.045 – –

the corresponding correlation. For further information regarding the handling of
sparsity, we refer the reader to [30, 33].

The information about the set of users with a similar rating behavior compared
to the current user (NN, the set of nearest neighbors) is the basis for predicting the
rating of user Ua for an item that has not been rated up to now by Ua; see Eq. (2.2).

prediction.Ua; item/ D ra C
P

Uj2NN similarity.Ua; Uj / � .rj;item � rj /
P

Uj2NN similarity.Ua; Uj /
(2.2)

Based on the rating of the nearest neighbor of Ua, we are able to determine a
prediction for user Ua (see Table 2.4). The nearest neighbor of Ua is user U2 (see
Table 2.3). The learning units rated by U2 but not rated by Ua are l3 and l8. Due to
the determined predictions—Eq. (2.2)—item l3 would be ranked higher than item
l8 in a recommendation list.

Item-Based Collaborative Filtering. In contrast to user-based collaborative filter-
ing, item-based collaborative filtering searches for items (nearest neighbors—NN)
rated by Ua that received similar ratings as items currently under investigation. In
our running example, learning unit l4 has already received a good evaluation (4.0 on
a rating scale of 1–5) by Ua. The item which is most similar to l4 and has not been
rated by Ua is item l3 (similarity(l3; l4) D 0.35). In this case, the nearest neighbor of
item l3 is l4; this calculation is based on Eq. (2.3).

If we want to determine a recommendation based on item-based collaborative
filtering, we have to determine the similarity (using the Pearson correlation coeffi-
cient) between two items la and lb where U denotes the set of users who both rated
la and lb , ru;li denotes the rating of user u on item li , and rli is the average rating of
the i -th item.

similarity.la; lb/ D
P

u2U .ru;la � rla / � .ru;lb � rlb /qP
u2U .ru;la � rla /

2 �pPu2U .ru;lb � rlb /
2

(2.3)

The information about the set of items with a similar rating pattern compared
to the item under consideration is the basis for predicting the rating of user Ua for
the item; see Eq. (2.4). Note that in this case NN represents a set of items already
evaluated by Ua. Based on the assumption of k D 1, prediction(Ua; l3) D 4.0, i.e.,
user Ua would rate item l3 with 4.0.
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prediction.Ua; item/ D
P

it2NN similarity.item; it/ � ra;it
P

it2NN similarity.item; it/
(2.4)

For a discussion of advanced collaborative recommendation approaches, we refer
the reader to Koren et al. [37] and Sarwar et al. [54].

2.3 Content-Based Filtering

Content-based filtering [49] is based on the assumption of monotonic personal
interests. For example, users interested in the topic Operating Systems are typically
not changing their interest profile from one day to another but will also be interested
in the topic in the (near) future. In online scenarios, content-based recommendation
approaches are applied, for example, when it comes to the recommendation of
websites [49] (news items with a similar content compared to the set of already
consumed news).

Content-based filtering (see Fig. 2.2) relies on two different types of background
data: (1) a set of users and (2) a set of categories (or keywords) that have been
assigned to (or extracted from) the available items (item descriptions). Content-
based filtering recommendation systems calculate a set of items that are most similar
to items already known to the current user Ua.

The basic approach of content-based filtering is to compare the content of already
consumed items (e.g., a list of news articles) with new items that can potentially
be recommended to the user, i.e., to find items that are similar to those already
consumed (positively rated) by the user. The basis for determining such a similarity
are keywords extracted from the item content descriptions (e.g., keywords extracted
from news articles) or categories in the case that items have been annotated with the
relevant meta-information. Readers interested in the principles of keyword extrac-
tion are referred to Jannach et al. [33]. Within the scope of this chapter we focus on
content-based recommendation which exploits item categories (see Table 2.1).

Content-based filtering will now be explained based on a running example which
relies on the information depicted in Tables 2.1, 2.5, and 2.6. Table 2.1 provides an
overview of the relevant items and the assignments of items to categories. Table 2.5
provides information on which categories are of relevance for the different users.
For example, user U1 is primarily interested in items related to the categories Java
and UML. In our running example, this information has been derived from the
rating matrix depicted in Table 2.2. Since user Ua already rated the items l4, l6,
and l10 (see Table 2.2), we can infer that Ua is interested in the categories UML,
Management, and Quality (see Table 2.5) where items related to the category UML
and Management have been evaluated two times and items related to Quality have
been evaluated once.

If we are interested in an item recommendation for the user Ua we have to search
for those items which are most similar to the items that have already been consumed
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Fig. 2.2 Content-based filtering (CBF) dataflow. Users rate items and receive recommendations
of items similar to those that have received a good evaluation from the current user Ua

Table 2.5 Degree of interest in different categories. For example,
user U1 accessed a learning unit related to the category Java three
times. If a user accessed an item at least once, it is inferred that
the user is interested in this item

Category U1 U2 U3 U4 Ua

Java 3 (yes) 1 (yes)
UML 3 (yes) 4 (yes) 3 (yes) 3 (yes) 2 (yes)

Management 3 (yes) 3 (yes) 2 (yes)
Quality 1 (yes) 1 (yes)

(evaluated) by the Ua. This relies on the simple similarity metric shown in Eq. (2.5)
(the Dice coefficient, which is a variation of the Jaccard coefficient that “intensively”
takes into account category commonalities—see also Jannach et al. [33]). The major
difference from the similarity metrics introduced in the context of collaborative
filtering is that in this case similarity is measured using keywords (in contrast to
ratings).

similarity.Ua; item/ D 2 � categories.Ua/ \ categories.item/

categories.Ua/C categories.item/
(2.5)

2.4 Knowledge-Based Recommendation

Compared to the approaches of collaborative filtering and content-based filtering,
knowledge-based recommendation [5,14,16,23,42] does not primarily rely on item
ratings and textual item descriptions but on deep knowledge about the offered items.
Such deep knowledge (semantic knowledge [16]) describes an item in more detail
and thus allows for a different recommendation approach (see Table 2.7).
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Table 2.6 Example of content-based filtering. User Ua has already consumed
the items l4, l6, and l10; see Table 2.2. The item most similar—see Eq. (2.5)—
to the preferences of Ua is l8 and is now the best recommendation candidate for
the current user

LU
Rating

ofUa
Name Java UML Management Quality similarity(Ua, li)

l1
Data Structures

in Java yes yes 2/5

l2
Object

Relational
Mapping

yes yes 2/5

l3
Software

Architectures yes 2/4

l4 4.0 Project
Management yes yes –

l5 Agile Processes yes 2/4

l6 4.0 Object Oriented
Analysis yes yes –

l7
Object Oriented

Design yes yes 2/5

l8
UML and the

UP yes yes 4/5

l9 Class Diagrams yes 2/4

l10 3.0 OO Complexity
Metrics yes –

Ua yes yes yes

Table 2.7 Software engineering learning units (LU) described based on deep
knowledge: obligatory vs. nonobligatory (Oblig.), duration of consumption
(Dur.), recommended semester (Sem.), complexity of the learning unit (Compl.),
associated topics (Topics), and average user rating (Eval.)

LU Name Oblig. Dur. Sem. Compl. Topics Eval

l1
Data Structures

in Java yes 2 2 3 Java, UML 4.5

l2
Object

Relational
Mapping

yes 3 3 4 Java, UML 4.0

l3
Software

Architectures no 3 4 3 UML 3.3

l4
Project

Management yes 2 4 2 UML,
Management 5.0

l5 Agile Processes no 1 3 2 Management 3.0

l6
Object Oriented

Analysis yes 2 2 3 UML,
Management 4.7

l7
Object Oriented

Design yes 2 2 3 Java, UML 4.0

l8
UML and the

UP no 3 3 2 UML,
Management 2.0

l9 Class Diagrams yes 4 3 3 UML 3.0

l10
OO Complexity

Metrics no 3 4 2 Quality 5.0
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Fig. 2.3 Knowledge-based recommendation (KBR) dataflow: users are entering their preferences
and receive recommendations based on the interpretation of a set of rules (constraints)

Knowledge-based recommendation (see Fig. 2.3) relies on the following
background data: (a) a set of rules (constraints) or similarity metrics and (b)
a set of items. Depending on the given user requirements, rules (constraints)
describe which items have to be recommended. The current user Ua articulates
his/her requirements (preferences) in terms of item property specifications which
are internally as well represented in terms of rules (constraints). In our example,
constraints are represented solely by user requirements, no further constraint types
are included (e.g., constraints that explicitly specify compatibility or incompatibility
relationships). An example of such a constraint is topics D Java. It denotes the fact
that the user is primarily interested in Java-related learning units. For a detailed
discussion of further constraint types, we refer the reader to Felfernig et al. [16].
Constraints are interpreted and the resulting items are presented to the user.2

A detailed discussion of reasoning mechanisms that are used in knowledge-based
recommendation can be found, for example, in Felfernig et al. [16, 17, 22].

In order to determine a recommendation in the context of knowledge-based
recommendation scenarios, a recommendation task has to be solved.

Definition 2.1. A recommendation task is a tuple .R; I / whereR represents a set of
user requirements and I represents a set of items (in our case: software engineering
learning units li 2 LU). The goal is to identify those items in I which fulfill the
given user requirements (preferences).

A solution for a recommendation task (also denoted as recommendation) can be
defined as follows.

2Knowledge-based recommendation approaches based on the determination of similarities
between items will be discussed in Sect. 2.7.
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Definition 2.2. A solution for a recommendation task .R; I / is a set S � I such
that 8li 2 S W li 2 �.R/I where � is the selection operator of a conjunctive
query [17], R represents a set of selection criteria (represented as constraints), and
I represents an item table (see, for example, Table 2.7). If we want to restrict the
set of item properties shown to the user in a result set (recommendation), we have
to additionally include projection criteria � as follows: �.attributes.I //.�.R/I /.

In our example, we show how to determine a solution for a given recom-
mendation task based on a conjunctive query where user requirements are used
as selection criteria (constraints) on an item table I . If we assume that the user
requirements are represented by the set R D fr1 W semester � 3; r2 W topics D
Javag and the item table I consists of the elements shown in Table 2.7, then
�.LU/.�.semester� 3 ^ topicsDJava/I / D {l1; l2; l7}, i.e., these three items are consistent
with the given set of requirements.

Ranking Items. Up to this point we only know which items can be recommended
to a user. One widespread approach to rank items is to define a utility scheme
which serves as a basis for the application of multi-attribute utility theory (MAUT).3

Alternative items can be evaluated and ranked with respect to a defined set of interest
dimensions. In the domain of e-learning units, example interest dimensions of users
could be time effort (time needed to consume the learning unit) and quality (quality
of the learning unit). The first step to establish a MAUT scheme is to relate the
interest dimensions to properties of the given set of items. A simple example of such
a mapping is shown in Table 2.8. In this example, we assume that obligatory learning
units (learning units that have to be consumed within the scope of a study path)
trigger more time efforts than nonobligatory ones, a longer duration of a learning
unit is correlated with higher time efforts, and low complexity correlates with lower
time efforts. In this context, lower time efforts for a learning unit are associated with
a higher utility. Furthermore, we assume that the more advanced the semester, the
higher is the quality of the learning unit (e.g., in terms of education degree). The
better the overall evaluation (eval), the higher the quality of a learning unit (e.g., in
terms of the used pedagogical approach).

We are now able to determine the user-specific utility of each individual item.
The calculation of item utilities for a specific user Ua can be based on Eq. (2.6).

utility.Ua; item/ D
X

d2Dimensions

contribution.item; d / � weight.Ua; d/ (2.6)

If we assume that the current user Ua assigns a weight of 0.2 to the dimension
time effort (weight.Ua; time effort/ D 0:2) and a weight of 0.8 to the dimension
quality (weight.Ua; quality/ D 0:8), then the user-specific utilities of the individual
items (li ) are the ones shown in Table 2.9.

3A detailed discussion of the application of MAUT in knowledge-based recommendation scenarios
can be found in Ardissono et al. [1] and Felfernig et al. [16, 18].
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Table 2.8 Contributions of
item properties to the
dimensions time effort and
quality

Item property
Time effort

(1–10)
Quality

(1–10)

obligatory = yes 4 -

obligatory = no 7 -

duration = 1 10 -

duration = 2 5 -

duration = 3 1 -

duration = 4 1 -

complexity = 2 8 -

complexity = 3 5 -

complexity = 4 2 -

semester = 2 - 3

semester = 3 - 5

semester = 4 - 7

eval = 0–2 - 2

eval = >2–3 - 5

eval = >3–4 - 8

eval = >4 - 10

Table 2.9 Item-specific
utility for user Ua (i.e.,
utility.Ua; li /) assuming the
personal preferences for time
effort D 0.2 and quality D
0.8. In this scenario, item l4
has the highest utility for
user Ua

LU Time effort Quality Utility

l1 14 13 2.8+10.4 = 13.2
l2 7 13 1.4+10.4 = 11.8
l3 13 15 2.6+12.0 = 14.6
l4 17 17 3.4+13.6 = 17.0
l5 25 10 5.0+8.0 = 13.0
l6 14 13 2.8+10.4 = 13.2
l7 14 11 2.8+8.8 = 11.6
l8 16 7 3.2+5.6 = 8.8
l9 10 10 2.0+8.0 = 10.0
l10 16 17 3.2+13.6 = 16.8

Dealing with Inconsistencies. Due to the logical nature of knowledge-based
recommendation problems, we have to deal with scenarios where no solution
(recommendation) can be identified for a given set of user requirements, i.e.,
�.R/I D ;. In such situations we are interested in proposals for requirements
changes such that a solution (recommendation) can be identified. For example, if a
user is interested in learning units with a duration of 4 h, related to management,
and a complexity level > 3, then no solution can be provided for the given set
of requirements R D fr1 W duration D 4; r2 W topics D management; r3 W
complexity > 3g.

User support in such situations can be based on the concepts of conflict
detection [34] and model-based diagnosis [13, 15, 51]. A conflict (or conflict set)
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Fig. 2.4 Determination of
the complete set of diagnoses
(hitting sets) �i for the given
conflict sets CS1 D fr1; r2g
and CS2 D fr2; r3g:
�1 D fr2g and �2 D fr1; r3g

with regard to an item set I in a given set of requirements R can be defined as
follows.

Definition 2.3. A conflict set is a set CS � R such that �.CS/I D ;. CS is minimal
if there does not exist a conflict set CS0 with CS0 � CS.

In our running example we are able to determine the following minimal conflict
sets CSi : CS1 W fr1; r2g, CS2 W fr2; r3g. We will not discuss algorithms that
support the determination of minimal conflict sets but refer the reader to the
work of Junker [34] who introduces a divide-and-conquer-based algorithm with a
logarithmic complexity in terms of the needed number of consistency checks.

Based on the identified minimal conflict sets, we are able to determine the
corresponding (minimal) diagnoses. A diagnosis for a given set of requirements
which is inconsistent with the underlying item table can be defined as follows.

Definition 2.4. A diagnosis for a set of requirements R D fr1; r2; : : : ; rng is a set
� � R such that �.R��/I ¤ ;. A diagnosis � is minimal if there does not exist a
diagnosis �0 with �0 � �.

In other words, a diagnosis (also called a hitting set) is a minimal set of
requirements that have to be deleted from R such that a solution can be found for
R��. The determination of the complete set of diagnoses for a set of requirements
inconsistent with the underlying item table (the corresponding conjunctive query
results in ;) is based on the construction of hitting set trees [51]. An example
of the determination of minimal diagnoses is depicted in Fig. 2.4. There are two
possibilities of resolving the conflict set CS1. If we decide to delete the requirement
r2, �.fr1;r3g/I ¤ ;, i.e., a diagnosis has been identified (�1 D fr2g) and—as
a consequence—all CSi have been resolved. Choosing the other alternative and
resolving CS1 by deleting r1 does not result in a diagnosis since the conflict CS2

is not resolved. Resolving CS2 by deleting r2 does not result in a minimal diagnosis,
since r2 already represents a diagnosis. The second (and last) minimal diagnosis that
can be identified in our running example is �2 D fr1; r3g. For a detailed discussion
of the underlying algorithm and analysis we refer the reader to Reiter [51]. Note
that a diagnosis provides a hint to which requirements have to be changed. For a
discussion of how requirement repairs (change proposals) are calculated, we refer
the reader to Felfernig et al. [17].
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Table 2.10 Examples of hybrid recommendation approaches (RECS D set of recommenders,
s D recommender-individual prediction, score D item score)

Method Description Example formula

weighted

predictions of
individual

recommenders are
summed up

score(item) = recS ∈RECS s(item,rec)

mixed

recommender-
individual

predictions are
combined into one
recommendation

result

score(item) = zipper-function(item,RECS)

cascade

the predictions of
one recommender

are used as input for
the next

recommender

score(item) = score(item,recn)

score(item,reci)=

⎧
⎨

⎩

s(item,rec1) , if i= 1
s(item,reci)×

score(item,reci−1) , otherwise.

2.5 Hybrid Recommendations

After having discussed the three basic recommendation approaches of collaborative
filtering, content-based filtering, and knowledge-based recommendation, we will
now present some possibilities to combine these basic types.

The motivation for hybrid recommendations is the opportunity to achieve a
better accuracy [6]. There are different approaches to evaluate the accuracy of
recommendation algorithms. These approaches (see also Avazpour et al. [2] and
Tosun Mısırlı et al. [58] in Chaps. 10 and 13, respectively) can be categorized into
predictive accuracy metrics such as the mean absolute error (MAE), classification
accuracy metrics such as precision and recall, and rank accuracy metrics such as
Kendall’s Tau. For a discussion of accuracy metrics we refer the reader also to
Gunawardana and Shani [28] and Jannach et al. [33].

We now take a look at example design types of hybrid recommendation
approaches [6, 33] which are weighted, mixed, and cascade (see Table 2.10). These
approaches will be explained on the basis of our running example. The basic
assumption in the following is that individual recommendation approaches return
a list of five recommended items where each item has an assigned (recommender-
individual) prediction out of {1.0, 2.0, 3.0, 4.0, 5.0}. For a more detailed discussion
of hybridization strategies, we refer the reader to Burke [6] and Jannach et al. [33].

Weighted. Weighted hybrid recommendation is based on the idea of deriving
recommendations by combining the results (predictions) computed by individual
recommenders. A corresponding example is depicted in Table 2.11 where the
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Table 2.11 Example of weighted hybrid recommendation: individual predictions
are integrated into one score. Item l8 receives the best overall score (9.0)

Items l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

s(li;collaborative filtering) 1.0 3.0 – 5.0 – 2.0 – 4.0 – –

s(li;content-based filtering) – 1.0 2.0 – – 3.0 4.0 5.0 – –

score(li) 1.0 4.0 2.0 5.0 0.0 5.0 4.0 9.0 0.0 0.0

ranking(li) 7 4 6 2 8 3 5 1 9 10

Table 2.12 Example of mixed hybrid recommendation. Individual predictions are
integrated into one score conform the zipper principle (best collaborative filtering
prediction receives score D 10, best content-based filtering prediction receives
score D 9 and so forth)

Items l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

s(li;collaborative filtering) 1.0 3.0 – 5.0 – 2.0 – 4.0 – –

s(li;content-based filtering) – 1.0 2.0 – – 3.0 4.0 5.0 – –

score(li) 4.0 8.0 5.0 10.0 0.0 6.0 7.0 9.0 0.0 0.0

ranking(li) 7 3 6 1 8 5 4 2 9 10

individual item scores of a collaborative and a content-based recommender are
summed up. Item l8 receives the highest overall score (9.0) and is ranked highest
by the weighted hybrid recommender.4

Mixed. Mixed hybrid recommendation is based on the idea that predictions of
individual recommenders are shown in one integrated result. For example, the
results of a collaborative filtering and a content-based recommender can be ranked
as sketched in Table 2.12. Item scores can be determined, for example, on the basis
of the zipper principle, i.e., the item with highest collaborative filtering prediction
value receives the highest overall score (10.0), the item with best content-based
filtering prediction value receives the second best overall score, and so forth.

Cascade. The basic idea of cascade-based hybridization is that recommenders
in a pipe of recommenders exploit the recommendation of the upstream recom-
mender as a basis for deriving their own recommendation. The knowledge-based
recommendation approach presented in Sect. 2.4 is an example of a cascade-
based hybrid recommendation approach. First, items that are consistent with the
given requirements are preselected by a conjunctive query Q. We can assume, for
example, that s.item;Q/ D 1.0 if the item has been selected and s.item;Q/ D 0:0

if the item has not been selected. In our case, the set of requirements R D
fr1 W semester � 3; r2 W topics D Javag in the running example leads to the
selection of the items {l1; l2; l7}. Thereafter, these items are ranked conform to

4If two or more items have the same overall score, a possibility is to force a decision by lot; where
needed, this approach can also be applied by other hybrid recommendation approaches.
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their utility for the current user (utility-based ranking U ). The utility-based ranking
U would determine the item order utility(l1) > utility(l2) > utility(l7) assuming
that the current user assigns a weight of 0.8 to the interest dimension quality
(weight(Ua,quality) D 0.8) and a weight of 0.2 to the interest dimensions time effort
(weight(Ua,time effort) D 0.2). In this example the recommender Q is the first one
and the results of Q are forwarded to the utility-based recommender.

Other examples of hybrid recommendation approaches include the following [6].
Switching denotes an approach where—depending on the current situation—a
specific recommendation approach is chosen. For example, if a user has a low
level of product knowledge, then a critiquing-based recommender will be chosen
(see Sect. 2.7). Vice versa, if the user is an expert, an interface will be provided
where the user is enabled to explicitly state his/her preferences on a detailed level.
Feature combination denotes an approach where different data sources are exploited
by a single recommender. For example, a recommendation algorithm could exploit
semantic item knowledge in combination with item ratings (see Table 2.7). For an
in-depth discussion of hybrid recommenders, we refer the reader to Burke [6] and
Jannach et al. [33].

2.6 Hints for Practitioners

In this section we provide several hints for practitioners who are interested in
developing recommendation systems.

2.6.1 Usage of Algorithms

The three basic approaches of collaborative filtering, content-based filtering, and
knowledge-based recommendation exploit different sources of recommendation
knowledge and have different strengths and weaknesses (see Table 2.13). Collabo-
rative filtering (CF) and content-based filtering (CBF) are easy to set up (only basic
item information is needed, e.g., item name and picture), whereas knowledge-based
recommendation requires a more detailed specification of item properties (and in
many cases also additional constraints). Both CF and CBF are more adaptive in
the sense that new ratings are automatically taken into account in future activations
of the recommendation algorithm. In contrast, utility schemes in knowledge-based
recommendation (see, for example, Table 2.9) have to be adapted manually (if no
additional learning support is available [21]).

Serendipity effects are interpreted as a kind of accident of being confronted
with something useful although no related search has been triggered by the user.
They can primarily be achieved when using CF approaches. Due to the fact that
content-based filtering does not take into account the preferences (ratings) of other
users, no such effects can be achieved. Achieving serendipity effects for the users
based on KBR is possible in principle, however, restricted to and depending on
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Table 2.13 Summary of the
strengths and weaknesses of
collaborative filtering (CF),
content-based filtering (CBF),
and knowledge-based
recommendation (KBR)

Property CF CBF KBR

easy setup yes yes no

adaptivity yes yes no

serendipity effects yes no no

ramp-up problem yes yes no

transparency no no yes

high-involvement items no no yes

the creativity of the knowledge engineer (who is able to foresee such effects when
defining recommendation rules). The ramp-up problem (also called the cold start
problem) denotes a situation where there is the need to provide initial rating data
before the algorithm is able to determine reasonable recommendations. Ramp-up
problems exist with both CF and CBF: in CF users have to rate a set of items before
the algorithm is able to determine the nearest neighbors; in CBF, the user has to
specify interesting/relevant items before the algorithm is able to determine items
that are similar to those that have already been rated by the user.

Finally, transparency denotes the degree to which recommendations can be
explained to users. Explanations in CF systems solely rely on the interpretation
of the relationship to nearest neighbors, for example, users who purchased item X
also purchased item Y. CBF algorithms explain their recommendations in terms of
the similarity of the recommended item to items already purchased by the user:
we recommend Y since you already purchased X which is quite similar to Y.
Finally—due to the fact that they rely on deep knowledge—KBR is able to provide
deep explanations which take into account semantic item knowledge. An example
of such an explanation is diagnoses that explain the reasons as to why a certain
set of requirements does not allow the calculation of a solution. Other types of
explanations exist: why a certain item has been included in the recommendation
and why a certain question has been asked to the user [16, 24].

Typically, CF and CBF algorithms are used for recommending low-involvement
items5 such as movies, books, and news articles. In contrast, knowledge-based
recommender functionalities are used for the recommendation of high-involvement
items such as financial services, cars, digital cameras, and apartments. In the latter
case, ratings are provided with a low frequency which makes these domains less
accessible to CF and CBF approaches. For example, user preferences regarding a
car could significantly change within a couple of years without being detected by the
recommender system, whereas such preference shifts are detected by collaborative
and content-based recommendation approaches due to the fact that purchases occur
more frequently and—as a consequence—related ratings are available for the

5The impact of a wrong decision (selection) is rather low, therefore users invest less evaluation
effort in a purchase situation.
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recommender system. For an overview of heuristics and rules related to the selection
of recommendation approaches, we refer the reader to Burke and Ramezani [9].

2.6.2 Recommendation Environments

Recommendation is an artificial intelligence (AI) technology successfully applied in
different commercial contexts [20]. As recommendation algorithms and heuristics
are regarded as a major intellectual property of a company, recommender systems
are often not developed on the basis of standard solutions but are rather based
on proprietary solutions that are tailored to the specific situation of the company.
Despite this situation, there exist a few recommendation environments that can be
exploited for the development of different recommender applications.

Strands is a company that provides recommendation technologies covering the
whole range of collaborative, content-based, and knowledge-based recommendation
approaches. MyMediaLite is an open-source library that can be used for the devel-
opment of collaborative filtering-based recommender systems. LensKit [11] is an
open-source toolkit that supports the development and evaluation of recommender
systems—specifically it includes implementations of different collaborative filtering
algorithms. A related development is MovieLens which is a noncommercial movie
recommendation platform. The MovieLens dataset (user � item ratings) is publicly
available and popular dataset for evaluating new algorithmic developments. Apache
Mahout is a machine learning environment that also includes recommendation
functionalities such as user-based and item-based collaborative filtering.

Open-source constraint libraries such as Choco and Jacop can be exploited for
the implementation of knowledge-based recommender applications. WeeVis is a
Wiki-based environment for the development of knowledge-based recommender
applications—resulting recommender applications can be deployed on different
handheld platforms such as iOS, Android, and Windows 8. Finally, Choicla is a
group recommendation platform that allows the definition and execution of group
recommendation tasks (see Sect. 2.7).

2.7 Further Algorithmic Approaches

We examine two further algorithmic approaches here: general critiquing-based
recommendations and group recommendations.

http://choicla.com/
http://www.weevis.org/
http://jacop.osolpro.com/
http://www.emn.fr/
http://mahout.apache.org/
http://www.movielens.org/
http://lenskit.grouplens.org/
http://www.mymedialite.net/
http://strands.com/
http://mahout.apache.org/
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Fig. 2.5 Example of a critiquing scenario. The entry item l7 is shown to the user. The user specifies
the critique “less time effort.” The new entry item is l9 since it is consistent with the critique and
the item most similar to l7

2.7.1 Critiquing-Based Recommendation

There are two basic approaches to support item identification in the context of
knowledge-based recommendation.

First, search-based approaches require the explicit specification of search criteria
and the recommendation algorithm is in charge of identifying a set of corresponding
recommendations [16,57] (see also Sect. 2.4). If no solution can be found for a given
set of requirements, the recommendation engine determines diagnoses that indicate
potential changes such that a solution (recommendation) can be identified. Second,
navigation-based approaches support the navigation in the item space where in
each iteration a reference item is presented to the user and the user either accepts
the (recommended) item or searches for different solutions by specifying critiques.
Critiques are simple criteria that are used for determining new recommendations
that take into account the (changed) preferences of the current user. Examples
of such critiques in the context of our running example are less time efforts and
higher quality (see Fig. 2.5). Critiquing-based recommendation systems are useful
in situations where users are not experts in the item domain and prefer to specify
their requirements on the level of critiques [35]. If users are knowledgeable in the
item domain, the application of search-based approaches makes more sense. For an
in-depth discussion of different variants of critiquing-based recommendation, we
refer the reader to [8, 10, 27, 41, 46, 52].

2.7.2 Group Recommendation

Due to the increasing popularity of social platforms and online communities,
group recommendation systems are becoming an increasingly important technology
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Table 2.14 Example of group recommendation: selection of a
learning unit for a group. The recommendation (l7) is based on
the least misery heuristic

Items l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

alex 1.0 3.0 1.0 5.0 4.0 2.0 4.0 2.0 1.0 4.0
dorothy 5.0 1.0 2.0 1.0 4.0 3.0 4.0 2.0 2.0 3.0

peter 2.0 4.0 2.0 5.0 3.0 5.0 4.0 3.0 2.0 2.0
ann 3.0 4.0 5.0 2.0 1.0 1.0 3.0 3.0 3.0 4.0

least misery 1.0 1.0 1.0 1.0 1.0 1.0 3.0 2.0 1.0 2.0

[29, 44]. Example application domains of group recommendation technologies
include tourism [47] (e.g., which hotels or tourist destinations should be visited by a
group?) and interactive television [43] (which sequence of television programs will
be accepted by a group?). In the majority, group recommendation algorithms are
related to simple items such as hotels, tourist destinations, and television programs.
The application of group recommendation in the context of our running example is
shown in Table 2.14 (selection of a learning unit for a group).

The group recommendation task is to figure out a recommendation that will
be accepted by the whole group. The group decision heuristics applied in the
context is least misery which returns the lowest voting for alternative li as group
recommendation. For example, the least misery value for alternative l7 is 3:0 which
is the highest value of all possible alternatives, i.e., the first recommendation for the
group is l7. Other examples of group recommendation heuristics are most pleasure
(the group recommendation is the item with the most individual votes) and majority
voting (the voting for an individual solution is defined by the majority of individual
user votes: the group recommendation is the item with the highest majority value).
Group recommendation technologies for high-involvement items (see Sect. 2.6) are
the exception of the rule [e.g., 31, 55]. First applications of group recommendation
technologies in the software engineering context are reported in Felfernig et al. [25].
An in-depth discussion of different types of group recommendation algorithms can
be found in O’Connor et al. [48], Jameson and Smyth [32], and Masthoff [44].

2.8 Conclusion

This chapter provides an introduction to the recommendation approaches of col-
laborative filtering, content-based filtering, knowledge-based recommendation, and
different hybrid variants thereof. While collaborative filtering-based approaches
exploit ratings of nearest neighbors, content-based filtering exploits categories
and/or extracted keywords for determining recommendations. Knowledge-based
recommenders should be used, for example, for products where there is a need
to encode the recommendation knowledge in terms of constraints. Beside algo-
rithmic approaches, we discussed criteria to be taken into account when deciding
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about which recommendation technology to use in a certain application context.
Furthermore, we provided an overview of environments that can be exploited for
recommender application development.
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Chapter 3
Data Mining

A Tutorial

Tim Menzies

Abstract Recommendation systems find and summarize patterns in the structure
of some data or in how we visit that data. Such summarizing can be implemented
by data mining algorithms. While the rest of this book focuses specifically on
recommendation systems in software engineering, this chapter provides a more
general tutorial introduction to data mining.

3.1 Introduction

A recommendation system finds and summarizes patterns in some structure (and
those patterns can include how, in the past, users have explored that structure). One
way to find those patterns is to use data mining algorithms.

The rest of this book focuses specifically on recommendation systems in software
engineering (RSSEs). But, just to get us started, this chapter is a tutorial introduction
to data mining algorithms:

• This chapter covers C4.5, K-means, Apriori, AdaBoost, kNN, naive Bayesian,
CART, and SVM.

• Also mentioned will be random forests, DBScan, canopy clustering, mini-batch
K-means, simple single-pass K-means, GenIc, the Fayyad–Irani discretizer,
InfoGain, TF–IDF, PDDP, PCA, and LSI.

• There will also be some discussion on how to use the above for text mining.
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Data mining is a very active field. Hence, any summary of that field must be
incomplete. Therefore this chapter ends with some suggested readings for those
who want to read more about this exciting field.

Every learning method is biased in some way, and it is important to understand
those biases. Accordingly, it is important to understand two biases of this chapter.
Firstly, it will be the view of this chapter that it is a mistake to use data miners
as black box tools. In that black box view, the learners are applied without any
comprehension of their internal workings. To avoid that mistake, it is useful for data
mining novices to reflect on these algorithms, as a menu of design options can be
mixed and matched and mashed-up as required. Accordingly, where appropriate,
this chapter will take care to show how parts of one learner might be used for
another. Secondly, this chapter discusses newer methods such as CLIFF, WHERE,
W2, and the QUICK active learner: work of the author, his collaborators, and/or his
graduate students. Caveat emptor!

3.2 Different Learners for Different Data

Let us start at the very beginning (a very good place to start). When you read you
begin with A-B-C. When you mine, you begin with data.

Different kinds of data miners work best of different kinds of data. Such data
may be viewed as tables of examples:

• Tables have one column per feature and one row per example.
• The columns may be numeric (have numbers) or discrete (contain symbols).
• Also, some columns are goals (things we want to predict using the other

columns).
• Finally, columns may contain missing values.

For example, in text mining, where there is one column per word and one row per
document, the columns contain many missing values (since not all words appear in
all documents) and there may be hundreds of thousands of columns.

While text mining applications can have many columns, Big Data applications
can have any number of columns and millions to billions of rows. For such very large
datasets, a complete analysis may be impossible. Hence, these might be sampled
probabilistically (e.g., using the naive Bayesian algorithm discussed below).

On the other hand, when there are very few rows, data mining may fail since
there are too few examples to support summarization. For such sparse tables, k-
nearest neighbors (kNN) may be best. kNN makes conclusions about new examples
by looking at their neighborhood in the space of old examples. Hence, kNN only
needs a few (or even only one) similar examples to make conclusions.

If a table has no goal columns, then this is an unsupervised learning problem
that might be addressed by (say) finding clusters of similar rows using, say, K-
means or expectation maximization. An alternate approach, taken by the Apriori
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association rule learner, is to assume that every column is a goal and to look for
what combinations of any values predict for any combination of any other.

If a table has one goal, then this is a supervised learning problem where the task
is to find combinations of values from the other columns that predict for the goal
values. Note that for datasets with one discrete goal feature, it is common to call
that goal the class of the dataset.

For example, here is a table of data for a simple data mining problem:
outlook | temp | humidity | windy | play?
-------- | ---- | -------- | ----- | -----
overcast | 64 | 65 | TRUE | yes
overcast | 72 | 90 | TRUE | yes
overcast | 81 | 75 | FALSE | yes
overcast | 83 | 86 | FALSE | yes
rainy | 65 | 70 | TRUE | no
rainy | 71 | 91 | TRUE | no
rainy | 68 | 80 | FALSE | yes
rainy | 70 | 96 | FALSE | yes
rainy | 75 | 80 | FALSE | yes
sunny | 69 | 70 | FALSE | yes
sunny | 72 | 95 | FALSE | no
sunny | 75 | 70 | TRUE | yes
sunny | 80 | 90 | TRUE | no
sunny | 85 | 85 | FALSE | no

In this table, we are trying to predict for the goal of play?, given a record of the
weather. Each row is one example where we did or did not play golf (and the goal
of data mining is to find what weather predicts for playing golf).

Note that temp and humidity are numeric columns and there are no missing
values.

Such simple tables are characterized by just a few columns and not many rows
(say, dozens to thousands). Traditionally, such simple data mining problems have
been explored by C4.5 and CART. However, with some clever sampling of the data,
it is possible to scale these traditional learners to Big Data problems [7, 8].

3.3 Association Rules

The Apriori learner seeks association rules, i.e., sets of ranges that are often
found in the same row. First published in the early 1990s [1], Apriori is a classic
recommendation algorithm for assisting shopper. It was initially developed to
answer the shopping basket problem, i.e., “if a customer buys X , what else might
they buy?”

Apriori can be used by, say, an online book store to make recommendations
about what else a user might like to see. To use Apriori, all numeric values must
be discretized, i.e., the numeric ranges replaced with a small number of discrete
symbols. Later in this chapter, we discuss several ways to perform discretization
but an X% chop is sometimes as good as anything else. In this approach, numeric
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feature values are sorted and then divided into X equal-sized bins. A standard
default is X D 10, but the above table is very small, so we will use X D 2 to
generate:

outlook | temp | humidity | windy | play?
-------- | --------- | ---------- | ----- | -----
overcast | over 73.5 | over 82.5 | FALSE | yes
overcast | up to 73.5 | up to 82.5 | TRUE | yes
overcast | up to 73.5 | over 82.5 | TRUE | yes
overcast | over 73.5 | up to 82.5 | FALSE | yes
rainy | over 73.5 | up to 82.5 | FALSE | yes
rainy | up to 73.5 | over 82.5 | TRUE | no
rainy | up to 73.5 | up to 82.5 | TRUE | no
rainy | up to 73.5 | over 82.5 | FALSE | yes
rainy | up to 73.5 | up to 82.5 | FALSE | yes
sunny | over 73.5 | over 82.5 | TRUE | no
sunny | over 73.5 | over 82.5 | FALSE | no
sunny | over 73.5 | up to 82.5 | TRUE | yes
sunny | up to 73.5 | over 82.5 | FALSE | no
sunny | up to 73.5 | up to 82.5 | FALSE | yes

In the discretized data, Apriori then looks for sets of ranges where the larger set
is found often in the smaller. For example, one such rule in our table is:
play=yes ==> humidity=up to 82.5 & windy=FALSE

That is, sometimes when we play, humidity is high and there is no wind. Other
associations in this dataset include:
humidity= up to 82.5 & windy=FALSE ==> play = no
humidity= over 82.5 ==> play = no
humidity= up to 82.5 ==> play = yes
temperature= up to 73.5 ==> outlook = rainy
outlook=overcast ==> play = yes
outlook=rainy ==> temperature = up to 73.5
play= yes ==> humidity = up to 82.5
play=no ==> humidity = over 82.5
play=yes ==> outlook = overcast

Note that in association rule learning, the left- or right-hand side of the rule can
contain one or more ranges. Also, while all the above are associations within our
play data, some are much rarer than others. Apriori can generate any number of
rules depending on a set of tuning parameters that define, say, the minimum number
of examples needed before we can print a rule.

Formally, we say that an association rule learner takes as input D “transactions”
of items I (e.g., see the above example table). As shown above, association rule
learners return rules of the form LHS ) RHS where LHS � I and RHS � I and
LHS \ RHS D ;. In the terminology of Apriori, an association rule X ) Y has
support s if s% of D contains X ^ Y , i.e., s D jX^Y j

jD j , where jX ^ Y j denotes the
number of transactions/examples in D containing both X and Y . The confidence
c of an association rule is the percentage of transactions/examples containing X

which also contain Y , i.e., c D jX^Y j
jX j . As an example of these measures, consider

the following rule:
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play=yes ==> outlook = overcast

In this rule, LHS D X D play=yes and RHS D Y D outlook=overcast.
Hence:

• support D jX^Y j
jD j D 4

14
D 0:29

• confidence D jX^Y j
jX j D 4

9
D 0:44.

Apriori was the first association rule pruning approach. When it was first
proposed (1993), it was famous for its scalability. Running on a 33MHz machine
with 64MB of RAM, Apriori was able to find associations in 838MB of data in
under 100 s, which was quite a feat for those days. To achieve this, Apriori explored
progressively larger combinations of ranges. Furthermore, the search for larger
associations was constrained to smaller associations that occurred frequently. These
frequent itemsets were grown incrementally and Apriori only explored itemsets of
size N using items that occurred frequently of size M < N . Formally speaking,
Apriori uses support-based pruning, i.e., when searching for rules with high
confidence, sets of items Ii ; : : : ; Ik are examined only if all its subsets are above
some minimum support value. After that, confidence-based pruning is applied to
reject all rules that fall below some minimal threshold of adequate confidence.

3.3.1 Technical Aside: How to Discretize?

In the above example, we used a discretization policy before running Apriori. Such
discretization is a useful technique for many other learning schemes (and we will
return to discretization many times in this chapter).

For now, we just say that discretization need not be very clever [58]. For example,
a 10 % chop is often as good as anything else (exception: for small tables of data like
that shown above, it may be necessary to use fewer chops, just in case not enough
information falls into each bin).

A newer method for discretization is to generate many small bins (e.g., 10 bins)
then combine adjacent bins whose mean values are about the same. To apply this
newer approach, we need some definition of “about the same” such as Hedges’s test
of Fig. 3.1.

3.4 Learning Trees

Apriori finds sets of interesting associations. For some applications this is useful
but, when the query is more directed, another kind of learner may be more suited.
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Hedges’s test [28] explores two populations, each of which is characterized by its size,
their mean, and standard deviation (denoted n, mean, and sd, respectively).
When testing if these two populations are different, we need to consider the following:

• If the standard deviation is large, then this confuses our ability to distinguish the
bins.

• But if the sample size is large then we can attenuate the effects of the large standard
deviation, i.e., the more we know about the sample, the more certain we are of the
mean values.

Combining all that, we arrive at an informal measure of the difference between two
means (note that this expression weights confusion by how many samples are trying to
confuse us):

attenuate = n1 + n2
confusion = (n1*sd1 + n2*sd2) / attenuate
delta = abs(mean1 - mean2) / confusion

A more formally accepted version of the above, as endorsed by Kampenes et al. [31], is
the following. To explain the difference between the above expression and Hedges’s test,
note the following.

• This test returns true if the delta is less than some “small” amount. The correct value
of “small” is somewhat debatable but the values shown below are in the lower third
of the “small” values seen in the 284 tests from the 64 experiments reviewed by
Kampenes et al..

• A c term is added to handle small sample sizes (less than 20).
• Standard practice in statistics is to:

– use n−1 in standard deviation calculations; and
– use variance sd2 rather than standard deviation.

function hedges(n1,mean1,sd1, n2,mean2,sd2) {
small = 0.17 # for a strict test. for a less severe

test, use 0.38
m1 = n1 - 1
m2 = n2 - 1
attenuate = m1 + m2
confusion = sqrt( (m1 * (sd1)ˆ2 + m2 * (sd2)ˆ2) /

attenuate)
delta = abs(mean1 - mean2) / confusion
c = 1 - 3/(4*(m1 + n1) - 1)
return delta * c < small

}

Fig. 3.1 A tutorial on Hedges’s test of the effect size of the difference between two popula-
tions [28, 31]

3.4.1 C4.5

The C4.5 decision tree learner [50] tries to ignore everything except the minimum
combination of feature ranges that lead to different decisions. For example, if C4.5
reads the raw golf data (from Sect. 3.2), it would focus on the play? feature.
It would then report what other feature ranges lead to such playful behavior. That
report would take the form of the following tree:
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outlook = sunny
| humidity <= 75: yes
| humidity > 75: no
outlook = overcast: yes
outlook = rainy
| windy = TRUE: no
| windy = FALSE: yes

To read this decision tree, note that subtrees are indented and that any line containing
a colon (:) is a prediction. For example, the top branch of this tree says: “If outlook
is sunny and humidity � 75 then we will play golf.” Note that this decision tree
does not include temp, i.e., the temperature. This is not to say that golf playing
behavior is unaffected by cold or heat. Rather, it is saying that, for this data, the
other features are more important.

C4.5 looks for a feature value that simplifies the data. For example, consider the
above table with five examples of no playing of golf and nine examples of yes,
we played golf. Note that the baseline distributions in the table are p1 D 5=14 and
p2 D 9=14 for no and yes (respectively). Now look at the middle of the above tree,
at the branch outlook = overcast. C4.5 built this branch since within that region,
the distributions are very simple indeed: all the rows where the outlook is overcast
have play? = yes. That is, in this subtree p1 D 0 and p2 D 100%.

Formally, we say that decision tree learners look for splits in the data that
reduce the diversity of the data. This diversity is measured by the entropy equation
discussed in Fig. 3.2. For example, in the golf example, the relative frequency of
each class was p1 D 5=14 and p2 D 9=14. In that case:
e = entropy([5/14, 9/14])

= -5/14 * log2(5/14) - 9/14 *log2(9/14) = 0.94

For the subtree selected by outlook = overcast, where p1 D 0 and p2 D 100%,
we ignore the zero value (since there is no information there) and compute:
n1 = 4
e1 = entropy([1]) = -1 * log2(1) = 0

Note that for the subtree with five rows selected by outlook = sunny, there are
two yes and one no. That is:
n2 = 5
e2 = entropy([2/5, 3/5]) = 0.97

Also, and for the subtree with five rows selected by outlook = rainy, there are
three yes and two no. Hence:
n3 = 5
e3 = entropy([3/5, 2/5]) = 0.97
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How to measure diversity? For numeric classes, it is customary to use standard devia-
tion. However, for discrete classes, we need something else. To define such a diversity
measure, we start with the following intuition:

• a population that contains only one thing is not diverse;
• a population that contains many things is more diverse.

Consider some sheep and cows in a barnyard, which we will represent as a piece of
paper. Imagine that the animals do not like each other so they huddle in different corners.
Say the sheep cover 10% of the yard and the cows cover 30%. To get some wool, we
keep folding the piece of paper in half until we find all those sheep—a process we can
represent mathematically as log2(0.1). The same cost to find the cows takes log2(0.3).
The expected value of that search is the probability of each population times the cost of
finding that population, i.e., . The logarithm of a
probability less than one is negative so, by convention, we multiply by a minus sign. This
informal example, while illustrative, has limitations (e.g., it ignores details like the 60%
grass). The formal definition of symbol diversity comes from the famous information
entropy expression of Shannon [55, 56]: entropy
Shannon used entropy as a way to measure how much signal is in a transmission:

• A piece of paper that is full of only one thing has, by definition, one thing every-
where. In terms of the above discussion, this is the population that is not diverse.

• Such a piece of paper has no distinctions, i.e., no regions where one thing becomes
another.

• Hence, to transmit that information takes zero bits since there is nothing to say.

Note that Shannon’s equation captures this “zero bits” case. If you only have one thing
then n = 1 and p1 = 1 and entropy is zero: entropy([1]) = 0. On the other hand, as we
increase diversity, the more bits are required to transmit that signal. For example, having
three similar things is less diverse than having four or five similar things (as we might
expect):

Fig. 3.2 A tutorial on measuring diversity using Shannon entropy [55, 56]

From the above, we can compute the expected value of the entropy after dividing
the 14 rows in our table using the above tree:
n = n1 + n2 + n3 = 14
expect = 4/14 * 0 + 5/14 * 0.97 + 5/14 * 0.97 = 0.65

That is, the above tree has simplified the data from e = 0.94 to the new expected
value of 0.65.

3.4.2 CART

The classification and regression tree (CART) learner is another traditional learner
first developed for simple data mining problems [6]. Like C4.5, CART has been a
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framework within which many researchers have proposed exciting new kinds of data
miners (for example, the research on CART led to the invention of random forests,
discussed below).

For certain classes of problem, CART is known to work as well as or better than
more complex schemes [14]. The lesson here is that before rushing off to try the
latest and greatest learner, it is worthwhile to spend some effort on simpler learners
like CART and C4.5. At the very least, these simple learners will offer baseline
results against which supposedly more sophisticated methods can be compared.

The entropy equation of C4.5 assumes that the goal class is discrete. The CART
regression tree learner applies the same recursive split procedure of C4.5, but it
assumes that the goal class is numeric. CART generates regression trees that look
the same as decision trees but their leaves contain numeric predictions. For such
numeric goals, we can measure the diversity of the class distribution using standard
deviation.

For reasons of speed, it is useful to compute standard deviation using a single-
pass algorithm. Suppose we have n measurements of numeric goals in a class
distribution x1; x2; x3; : : :. If t is the sum of all the xi variables and t2 is the sum

of the square of all the xi variables, then s D stdev D
q

t2�.t2=n/

n�1
. Apart from the

handling of the class variable, C4.5 and CART work in very similar ways: they try
to split on all features, then they use the split that reduces diversity the most:

• C4.5 finds splits that divide the n discrete goals into ni divisions, each with
entropy ei .

• CART finds splits that divide the n numeric goals into ni divisions, each with
standard deviation si .

Both algorithms then apply some weighted sum to compute the expected value of
the split:

• C4.5: expected diversity DP
i
ni
n
� ei ;

• CART: expected diversity DP
i
ni
n
� si .

Once they find the feature that generates the split with the lowest diversity, they then
apply that split and recurse on each division.

3.4.3 Hints and Tips for CART and C4.5

Any recursive algorithm such as CART (or C4.5) needs a stopping criterion; e.g.,
stop when there are less than M examples falling into each subtree.

• As M gets larger, it becomes harder to form new subtrees so the total tree size
shrinks. That is, the tree becomes easier to read.

• As M gets smaller, it becomes easier for the learner to explore special cases
within the data. That is, the predictions of the tree can become more accurate.
Random forests, discussed below, use very small M values (e.g., M D 2).
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For example, the housing dataset describes 506 houses from Boston. Each house is
described in terms of 14 features (and the last feature “PRICE” is the target concept
we seek to predict):

CRIM. Per capita crime rate by town.
ZN. Proportion of residential land zoned for lots over 25,000 square feet.
INDUS. Proportion of non-retail business acres per town.
CHAS. Charles River dummy variable (1 if the tract bounds the river, 0 other-

wise).
NOX. Nitric oxides concentration (parts per 10 million).
RM. Average number of rooms per dwelling.
AGE. Proportion of owner-occupied units built prior to 1940.
DIS. Weighted distances to five Boston employment centers.
RAD. Index of accessibility to radial highways.
TAX. Full-value property-tax rate per $10,000.
PTRATIO. Pupil–teacher ratio by town.
B. 1000.B � 0:63/2 where B is the proportion of blocks by town.
LSTAT. Lower status of the population.
PRICE. Median value of owner-occupied homes.

With the default value of M D 4, CART generates a tree with 28 leaves. But
with M D 100, we generate a much more readable and smaller tree with only 9
leaves. This tree is shown below:

STAT <= 9.725 :
| RM <= 6.941 :
| | DIS <= 3.325 : PRICE = 27.4
| | DIS > 3.325 :
| | | RM <= 6.545 : PRICE = 23.8
| | | RM > 6.545 : PRICE = 26.8
| RM > 6.941 : 36.0
LSTAT > 9.725 :
| LSTAT <= 15 :
| | DIS <= 4.428 :
| | | TAX <= 300 : PRICE = 21.9
| | | TAX > 300 : PRICE = 20.3
| | DIS > 4.428 : PRICE = 19.7
| LSTAT > 15 :
| | CRIM <= 5.769 : PRICE = 17.0
| | CRIM > 5.769 : PRICE = 13.6

Any line containing a colon (:) is a prediction. For example, the top branch of this
decision tree is saying: “If STAT < 9:725 and RM � 6:941 and DIS � 3:325 then
PRICE D 27:4.” The smaller tree, shown above, is less accurate than the tree grown
with M D 4. However, the difference is not large:

• the predictions of the larger tree correlate with the actuals at R2 D 91%, and
• the smaller tree is nearly as accurate with R2 D 86%.

http://archive.ics.uci.edu/ml/datasets/Housing
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In the above, R2 is a measure of how much one, say, class feature f is determined
by another variable x. This is called the Pearson correlation coefficient1 [45].

Note that the smaller tree is much easier to read and to understand while being
nearly as accurate as the larger and more complex tree. When discussing a learned
model with users, sometimes it is worth losing a few points in performance in
order to display a smaller, more easily understood, tree. Note also that this trick
of selecting M in order to balance performance vs readability can be applied to any
tree learning procedure including CART or C4.5.

Finally, it is worth mentioning that tree learners often include a post-pruning step
where the data miner experiments with removing subtrees. In this post-pruning, if
the predictive power of the pruned tree is not worse than the original tree, then the
pruner recurses on the reduced tree.

3.4.4 Random Forests

Traditional tree learners like CART and C4.5 cannot scale to Big Data problems
since they assume that data is loaded into main memory and executed within one
thread. There are many ways to address these issues such as the classic “peepholing”
method of Catlett [8]. One of the most interesting, and simplest, is the random forest
method of Breimann [7]. The motto of random forests is, “If one tree is good, why
not build a whole bunch?” To build one tree in a random forest, pick a numberm less
than the number of features. Then, to build a forest, build many trees as follows:

1. select some subset d of the training data;
2. build a tree as above, but at each split, only consider m features (selected at

random); and
3. do not bother to post-prune.

Finding the right d and m values for a particular dataset means running the forests,
checking the error rates in the predictions, then applying engineering judgment to
select better values. Note that d cannot be bigger than what can fit into RAM. Also,
a useful default for m is the log of the number of features.

Random forests make predictions by passing test data down each tree. The output
is the most common conclusion made by all trees.

Random forests have certain drawbacks:

• Random forests do not generate a single simple model that users can browse
and understand. On the other hand, the forests can be queried to find the most
important features (by asking what features across all the trees were used most
as a split criteria).

1Given a mean value for x over n measurements Nx D 1
n

Pn
iD1 xi , then the total sum of squares is

SStot DP
i .xi � Nx/2 and the sum of squares of residuals is SSerr DP

i .xi � fi /
2 . From this, the

amount by which x determines f is R2 D 1� .SSerr=SStot/.
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• Some commonly used data mining toolkits insist that all the data load into RAM
before running random forests.2

Nevertheless, random forests are remarkably effective:

• Random forests generate predictions that are often as good as, or better than,
many other learners [7].

• They are fast. In [7], Breimann reports experiments where running it on a dataset
with 50,000 cases and 100 variables, it produced 100 trees in 11 min on a
800MHz machine. On modern machines, random forest learning is even faster.

• They scale to datasets with very large numbers of rows or features: just repeatedly
sample as much data as can fit into RAM.

• They extend naturally into cloud computing: just build forests on different CPUs.

Like C4.5 and CART, it might be best to think of random forests as a framework
within which we can explore multiple data mining methods:

• When faced with data that is too big to process:

– Repeat many times:
– Learn something from subsets of the rows and features.

• Then make conclusions by sampling across that ensemble of learners.

As seen with random forests, this strategy works well for decision tree learning, but
it is useful for many other learners as well (later in this chapter we discuss an analog
of random forests for the naive Bayesian classifier).

Note that for this style of random learning to be practical, each model must be
learned very fast. Hence, when building such a learner, do not “sweat the small
stuff.” If something looks tricky, then just skip it (e.g., random forests do not do
post-pruning). The lesson of random forests is that multiple simple samples can do
better than fewer and more complex methods. Don’t worry, be happy.

A final note on random forests: they are an example of an ensemble learning
method. The motto of ensemble learning is that if one expert is good, then many
are better. While N copies of the same expert is clearly a waste of resources, N
experts all learned from slightly different data can offer N different perspectives on
the same problem. Ensemble learning is an exciting area in data mining—and one
that has proved most productive. For example:

• The annual KDD-cup is an international competition between data mining
research teams. All the first and second-placed winners for 2009–2011 used
ensemble methods.

• In our own work, our current best-of-breed learner for effort estimation is an
ensemble method [34].

Later in this chapter we will discuss other kinds of ensemble learners such as
AdaBoost.

2But it should be emphasized that this is more an issue in the typical toolkit’s implementation than
some fatal flaw with random forests.
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3.4.5 Applications of Tree Learning

C4.5 and CART are widely influential algorithms. The clarity and simplicity of this
kind of learning has allowed many researchers to develop innovative extensions. In
addition to random forests, those extensions include the following:

• The Fayyad–Irani discretizer [20] is a cut-down version of C4.5 that builds a tree
from a single feature. The leaves of that tree are returned as the learned bins.

• The InfoGain feature selector [25] does not build trees. Rather, it acts like C4.5’s
first split when it conducts a what-if query over all features. InfoGain sorts the
features by the entropy reduction that would result if the data was split on that
data. A standard InfoGain algorithm requires discrete data and so is typically run
over data that has been discretized by Fayyad–Irani.

• Principal direction divisive partitioning (PDDP) is a tree learner that splits
on synthesized features [3]. At each level of the recursion, PDDP finds the
eigenvectors of the correlation matrix of the data that falls into each sub-branch.
Technically, this is a principal component analysis (PCA) that transforms the data
to a new coordinate system such that the greatest variance by any projection of
the data comes to lie on the first coordinate (called the first principal component).

• WHERE is a version of PDDP that uses the FASTMAP trick to find an
approximation to the first component [40]. WHERE uses the Aha distance
function (defined later in this chapter).

– After picking any row X at random, WHERE finds the row Right that is
furthest from X and then the row Left that is furthest from Right.

– WHERE then projects all rows onto the line that runs from Left to Right by
finding:

1. the distance c between Left and Right; and
2. for every row, the distance a and b to rows Left and Right.

With that information, the projection of a row along the Left and Right line is
x D .a2 C c2 � b2/=.2c/.

– WHERE finds the median x value, then splits the data above and below that
split point. The algorithm then recurses on each split.

These variants can be much simpler than the standard C4.5 (or CART). For
example:

• WHERE and PDDP can find much shallower trees than CART or C4.5. The
reason for this is that if there exist N correlated features, then the principal
component found by PCA (or the approximation found by WHERE) can model
those N features with M < N dimensions.

• WHERE runs much faster than PDDP. Finding the principal component takes
polynomial time while WHERE’s projections take linear time (only 4N distance
measures between rows).

• InfoGain does not even have to model the recursive tree data structure. This
algorithm is widely used in text mining since it runs in linear time and takes
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Consider a two-column dataset where column1 is the performance score of some
learner and column2 is the name of that learner. If we sort on column1 then apply
Fayyad–Irani, all the learners with the same scores will be grouped together in the one
bin. The best learner is the most common learner found in the bin with greatest value.
Alternatively, consider a small modification of Fayyad–Irani, in which we recurse
through a sorted list of buckets, sorted on their mean score. Each bucket contains all
the performance scores on one learner. The first level split finds the index of the list that
divides the buckets into two lists, which we will call list1 and list2, that are up to
and above the split:

• Let the mean of the performance scores in the entire list, list1, and list2 be
(respectively).

• Let the number of performance scores in list1 and list2 be n1 and n2 (respec-
tively).

• A good split is the one that maximizes the expected value of the sum of squares of
the mean differences before and after divisions. If n = n1 + n2 then that expected
value is:

This is the Scott–Knott procedure for ranking different treatments [53]. This procedure
recurses, on the bins in each split, but only if some statistical test agrees that distribu-
tions in list1 and list2 are statistically different. This procedure is quite clever in
that it can divide T treatments using log2(T ) comparisons. Mittas and Angelis [43] rec-
ommend using ANOVA to test if list1 and list2 are significantly statistically dif-
ferent. If the distributions are non-Gaussian, they also recommend applying the Bloom
transform to the data as a preprocessor. It turns out that if we use the simpler Hedges
procedure (described above), then the learners are grouped in the same way as using an
ANOVA+Bloom test.

Fig. 3.3 A tutorial on using tree learners to rank treatments

very little memory. Hall and Holmes [25] comment that other feature selectors
can be more powerful, but are slower and take more memory.

• Fayyad–Irani only needs to reason about two features at any one time (the
numeric feature being discretized and the class feature). Hence, even if all the
data cannot fit into RAM, it may still be possible to run Fayyad–Irani (and if
memory problems persist, a simple preprocessor to the data that selects X% of
the rows at random may suffice for learning the discretized ranges).

As an aside, this Fayyad–Irani discretizer is useful for more than just building
decision trees. It is also useful a procedure for ranking performance results from
different learners (see Fig. 3.3).

3.5 Naive Bayesian

When working with a new dataset, it is prudent to establish a baseline result using
the most direct and simplest approach. Once that baseline performance is known,
then it is possible to know how much more work is required for this data.

The most direct and simplest learning method discussed in this chapter is a
naive Bayesian classifier. Despite the name, naive Bayesian classifiers are hardly
“naive.” In fact, they offer a range of important services such as learning from very
large datasets, incremental learning, anomaly detection, row pruning, and feature
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pruning—all in near linear time (i.e., very fast). Better yet, as discussed below,
implementing those services is trivially simple. The reason these classifiers are
called “naive” is that they assume that, within one class, all features are statistically
independent. That is, knowledge about the value of one feature does not tell us
anything about the value of any other. So a naive Bayesian classifier can never
look at a table of medical diagnoses to infer that pulse=0 is associated with
temperature=cold.

Proponents of tree learning would dispute this naive Bayesian assumption. They
prefer algorithms like C4.5 or CART or random forests since tree learners always
collect information in context: that is, all subtrees refer to data in the context of
the root of that tree. Strange to say, naive Bayesian often performs as well as, or
better than, decision tree learning—an observation that is carefully documented
and explained by Domingos and Pazzani [15]. In short, they defined the volume of
the zone where naive Bayesian classifiers would make a different decision to some
optimal Bayesian classifier (one that knows about correlations between features).
That zone is very small and grows vanishingly smaller as the number of features
in the dataset increases. This is another way of saying that the space in which the
naive Bayesian assumption is truly naive is quite tiny. This is very good news since
it means that a naive Bayesian classifier can store data using a simple frequency
table. Hence, a naive Bayesian classifier:

• has a tiny memory footprint;
• is very fast to training and very fast to make conclusions; and
• is simple to build.

Naive Bayesian classifiers use the famous Bayesian theorem to make predictions.
Tables of data are separated into their various classes. Statistics are then collected for
each class. For example, recall the play? data from Sect. 3.2. Here are the statistics
for that data. Note that all these numbers are divided into the two class variables
play?=yes and play?=no.

outlook temp humidity
===================== ================= =================

yes no yes no yes no
sunny 2 3 83 85 86 85
overcast 4 0 70 80 96 90
rainy 3 2 68 65 80 70

----------- ---------- ----------
sunny 2/9 3/5 mean 73 74.6 mean 79.1 86.2
overcast 4/9 0/5 std dev 6.2 7.9 std dev 10.2 9.7
rainy 3/9 2/5

windy play?
=================== ===========

yes no yes no
false 6 2 9 5
true 3 3

------- ----------
false 6/9 2/5 9/14 5/14
true 3/9 3/5
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Underneath each feature are some cumulative statistics. For example:

• The mean humidity is different for yes and no: 79.1 and 86.2 (respectively).
• Overcast appears 4/9 times when we play and zero times when we do not play.

That is, if in the future we see outlook=overcast, then it is far more likely that
we play than otherwise (to be precise, it is infinitely more likely that we will
play).

One way to view a naive Bayesian classifier is as a clustering algorithm where we
have clustered together all things with the same class into the same cluster. When
new data arrives we travel to every cluster and ask it to vote on “Does this look
familiar to you?” And the cluster (class) that offers the most votes is used to make
the prediction.

The voting procedure uses Bayes’s rule: it says that our new belief in a hypothesis
is the product of our old beliefs times any new evidence, i.e., new D now � old. As
an aside: this simple equation hides a trick. If the test case (which is the now term in
the above equation) has a missing feature, we just assume that it offers no evidence
for a conclusion. Hence, we can just skip over that feature. Note that this is a much
simpler scheme (to say the least) for handling missing values than other learners like
C4.5. In C4.5, if a subtree starts with some feature that is missing in the test case,
C4.5 then performs an intricate what-if query of all subtrees.

In Bayes’s rule, the probability of a hypothesis H given evidence E is
Pr.H jE/ D Pr.EjH/ � Pr.H/= Pr.E/. In this expression:

• The Pr.E/ term is the probability of the evidence. Since this is the same for each
test case, it can be ignored (and a good thing too since it is very unclear how to
calculate that term).

• The old term is the prior probability of the hypothesis, denoted Pr.H/. This is
just the frequency of each hypothesis. In our playing example, H is yes or no so
Pr.yes/ D 9=14 and Pr.no/ D 5=14.

• The probability of the evidence given the hypothesis, denoted Pr.EjH/, is looked
up from the table of statistics. This is the now term.

For example, if we were told that tomorrow’s forecast was for sun, the classes would
offer the following votes on how likely it is that we would play or not:

• Pr.yesjoutlook=sunny/ D 2=9 � 9=14 D 0:39.
• Pr.nojoutlook=sunny/ D 3=5� 5=14 D 0:14.

Since yes offers more votes, we would conclude that tomorrow we will play.
Note that as more evidence arrives, the more information we can add to now. For
example:

• Let the forecast be for sunshine, 66 degrees, 90 % humidity, and wind, i.e., E D
.outlook=sunshine; temp=66; humid=90; wind=true/

• To handle this conjunction, we multiply the individual probabilities:

Pr.yesjE/ D 2=9 � 0:0340 � 0:0221 � 3=9 � 9=14 D 0:000036
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Pr.nojE/ D 3=5 � 0:0291 � 0:0380 � 3=5 � 5=14 D 0:000136 :

• To report the above, we normalized the probabilities:

Pr.yesjE/ D 0:00036=.0:00036C 0:000136/ D 21%

Pr.nojE/ D 0:000136=.0:00036C 0:000136/D 79% :

• That is, for this forecast, no is offering more votes than yes. Hence, for this
forecast, we would predict no.

The above calculation had some long decimal numbers (e.g., 0.0340). Where did
these come from? Recall that temp=66 and for the class yes, the above table reports
that the mean temperature was 73 degrees with a standard deviation of 6.2. How
likely is 66 on a bell-shaped curve whose mean is 73 and whose standard deviation
is 6.2? We say that:

• the closer we get to the mean value, the higher the likelihood;
• the greater the diversity in the data, the lower the likelihood of any one value.

Both these notions can be expressed in terms of a bell-shaped curve (also known as
the normal or Gaussian distribution):

• This curve reaches maximum at the mean value.
• As the variance increases, the curve grows wider. Since the area under this

probability curve must sum to one, the wider the curve, the lower the top-of-
hill (where the mean is). That is, increasing diversity decreases our confidence in
a particular value.

Hence, a standard naive Bayesian classifier uses a Gaussian probability distribution
function to compute the likelihood of any particular number:
function gaussianPdf(mean, stdev, x) {

return 1/(stdev * sqrt(2*pi))* e ^ (-1*(x-mean)^2/(2*stdev*stdev))
}
print gaussianPdf(73, 6.2, 66)
==> 0.0340

Note that this calculation assumes that the underlying distribution is a bell-shaped
Gaussian curve. While this can be a useful engineering approximation, it may not
be true in many situations. Many Bayesian classifiers discretize their numerics
before making predictions, thus avoiding the need for this Gaussian assumptions.
A repeated result is that the performance of naive Bayesian is improved by
discretization [16]. A standard discretizer is the Fayyad–Irani approach discussed
in Sect. 3.4.5.
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In 1999, NASA’s $125M Mars climate orbiter burned up in the Martian atmosphere after
a mix-up in the units used to control the system.

• The problem was that meters were confused with feet and, as a result, the orbiter
passed 60 km, not 150 km above the Martian atmosphere.

• The confusion in the units was apparent on-route to Mars—the spacecraft required
unusually large course corrections.

• Sadly, the ground crew had no anomaly detector to alert them to how serious this
deviation was from the craft’s expected behavior.

In 2003, anomaly detection might have also saved the crew of the Columbia space shuttle.
On re-entry, a hypersonic shockwave entered a hole in the craft’s wing and tore the craft
apart:

• The hole was formed when the shuttle was struck at launch by a block of frozen
foam measuring 1200 in3 and traveling at 477 mph (relative to the vehicle).

• Engineers concluded that such a strike was not hazardous using a program called
CRATER. CRATER was trained on much smaller and much slower projectiles: a
normal CRATER example was a 3 in3 piece of debris traveling at under 150 mph.

• An anomaly detector could have alerted NASA to mistrust the engineers’ conclu-
sions since they were drawn from a region well outside of CRATER’s certified ex-
pertise.

Fig. 3.4 High-profile disasters that might have been averted via anomaly detection

3.5.1 Bayesian and Anomaly Detection

If data miners are used for mission critical or safety critical applications, it is
important to understand when they cannot be trusted. This is the role of the anomaly
detector. Such detectors are triggered when a new example is outside the range of the
examples used to train the learner. Several recent high-profile disasters could have
been averted if anomaly detectors were running on learned models (see Fig. 3.4).
Anomaly detection is a very active area of research in data mining. For a detailed
survey, see Chandola et al. [9]. But to give the reader a sample of how to build an
anomaly detector, we mention here one anomaly detector that can be built using the
above Bayesian statistics table.

Farnstrom et al. [19] use a statistical approach to detect anomalies. Suppose we
have access to the above Bayesian statistics table:

• Read each row and replace its class value with some single symbol
(e.g., global).

• For this global class, build the above Bayesian statistics table. With that table,
compute the suspect region for each feature:

– For numeric attributes, this region is outside the mean value plus or minus 1.96
times the standard deviation (this corresponds to a 95 % confidence interval).

– For discrete attributes, list all values that occur less than 5 % of the time in
that row.
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• When new data arrives, count how many times each feature falls into the suspect
region. Reject any row that has more than n features with suspect values.3

The above shows how to detect anomalies—not what to do with them. This is a
domain decision. One possibility is to store the anomalies in a bucket and, when that
bucket gets too big, run a second learner just on those harder examples. For example,
the trees generated by WHERE could be incrementally modified as follows:

• Build a tree from X% of the data.
• When new data arrives, push it down the tree to its nearest leaf cluster.
• At every level of that descent, check the Left and Right pairs. If the new instance

falls outside the range Left–Right:

– add the instance to a bucket of anomalies; and
– mark which of Left and Right is closest to the anomaly.

• If the number of anomalies grows beyond some threshold, then rebuild any
subtree with those anomalies. In that rebuild, use all the anomalies and any Left
and Right row not marked by the last point.

Note that this approach implies we only need to rebuild parts of the tree, which is
useful for any incremental learning scheme.

A more general version of this approach is the AdaBoost algorithm [21]. This is
a meta-learner scheme, i.e., it can be applied to any learner (e.g., naive Bayesian,
CART, C4.5, etc.). Like random forests, it is one of the most important ensemble
methods, since it has a solid theoretical foundation, very accurate predictions, great
simplicity (a few dozen lines of code to implement), and wide and successful
applications. Also, this algorithm can “boost” the performance of a weak learner
to a higher classification accuracy.

AdaBoost builds a sequence of T classifiers using some learner:

• To build a training set for classifier t , then for M times, sample with replacement
from the dataset according to the Dt distribution described below.

• All i 2 m examples are given some weight. Initially that weight is D1.i/ D 1
m

.
Subsequently, this weight is changed if classifier t incorrectly classifies example
i .

• Examples with the greater weights are used with higher probability by the next
classifier t C 1. That is, AdaBoost builds a sequence of classifiers 1; 2; : : : ; T

each of which focuses on the examples that were problematic for classifier t � 1.

AdaBoost updates the weights as follows:

• Let �t D 1
m

P
i Dt .i/ be sum of the weights of the examples with incorrect

classifications made by classifier ti .

3Note that Farnstrom et al. use n D 1 but this is a parameter that can be tuned. In the next section,
we discuss incremental learners where, at least during the initial learning phase, all the data will be
anomalous since this learner has never seen anything before. For learning from very few examples,
n should be greater than one.
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• Let ˇt D �t=.1 � �t /.
• Let DtC1 D Dt .i/

Zt
� where:

– � D ˇt if i was correctly classified by classifier t . Otherwise � D 1.
– Zt is a normalization constant such that

P
DtC1.i/ D 1.

To use this ensemble, each classifier t D 1; 2; : : : ; T proposes its own classification

ct with weight log
�

1
ˇt

�
(and AdaBoost returns the classification with the largest

weighted vote).

3.5.2 Incremental Bayesian

Naive Bayesian is an excellent candidate for very large mining of very long streams
of data. This is due to the fact that the working memory of a naive Bayesian classifier
can be very small: a summary of the data seen so far and the next test case to classify.
Such an incremental naive Bayesian classifier might work as follows: when a new
test case arrives, classify it using the existing statistics; then (and only then) update
the statistics with the new case. Some heuristics for incremental Bayesian learning
include the following:

1. Use a learner that updates very fast. In this respect, a naive Bayesian classifier is
a good candidate since its memory footprint is so small.

2. If the numerics in this domain do not conform to a Gaussian curve, use an
incremental discretizer to convert the numbers to discrete values. Implementing
such incremental discretizers is not a complex task [22].

3. If you use the Gaussian assumption, then be wary of floating point errors
(particularly for very long data streams). Incrementally compute standard devia-
tion using Knuth’s method [32, p. 232].

4. To emulate something like a random forest ensemble, split the incoming data
into 10 streams (each containing 90 % of the incoming data) and run a separate
learner for each stream. Let each stream make a prediction and report the
majority decision across all streams (perhaps weighted by accuracy performance
statistic seen for all these learners). Note that since naive Bayesian has such a
small footprint, then the memory overhead of running ten such classifiers is not
excessive.

5. Skip any suspect examples (as defined by the Farnstrom et al. detector) or run the
anomalies in their own separate stream.

6. Add an initial randomizer buffer that reads the input data in blocks of (say)
10,000 examples, then spits them out in a random order (for a linear-time
randomizer, use the Fisher–Yates shuffle [17]. This random buffer minimizes
order effects where the learned model is just some quirk of the ordering of the
data. Also, this buffer is useful for collecting preliminary statistics on the data
such as the minimum and maximum value of numeric values.

7. Do not trust the classifier until it has seen enough data. Experience with simple
datasets is that the performance of incremental naive Bayesian classifiers plateaus
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after a few hundred examples or less, but you need to check that point in your
own data. In any case, it is wise to have some start-up period where classification
is disabled.

8. To check for the performance plateau, divide the data into eras of, say, 100
examples in each era. Collect performance statistics across 10 streams. Compute
the mean and standard deviation of accuracy in each era i . Declare a plateau if
the performance of era i C 1 is about the same as era i (e.g., using Hedges’s
effect size rule shown above).

For some datasets, the number of examples needed to reach a plateau may be
surprisingly brief. For example, certain defect datasets plateau after 100 (or less)
examples [41]. Recent results with the QUICK active learner suggest that this can
be reduced to even fewer if we intelligently select the next example for training. For
example, in some software effort estimation datasets, we have plateaued after just a
dozen examples, or even less [35].

3.5.3 Incremental Learning and Dataset Shift

Hand [26] warns that classifiers can make mistakes when their models become
outdated. This can occur when some structure is learned from old data, then the data
generating phenomenon changes. For example, software effort estimations trained
on COBOL must be recalibrated if ever those programmers move to Javascript.

There are many ways to handle such dataset shifts; for a state-of-the-art report,
see the work of Minku and Yao [42]. But just to describe a simple way to handle
dataset shift, consider the incremental Bayesian classifier described above. In the
following circumstances, a very simple dataset shift scheme can be applied:

• the number of examples required to reach the performance plateau is t1;
• the rate of dataset shift is t2;
• the data shifts at a slower rate than the time required to plateau, i.e., t1 < t2.

In this (not uncommon) situation, a data scientist (or a recommendation system) can
handle dataset shift by running two learners: (1) an incremental Bayesian classifier
(described above) and (2) any other learner they like (which, in fact, could also be a
Bayesian classifier). While the performance plateau remains flat, the data scientist
(or the recommendation system) can apply the other learner to all data seen to-date.
But if the performance plateau starts changing (as measured by, say, Hedges’s test
of Fig. 3.1), then the data mining algorithm needs to dump the old model and start
learning afresh.

3.6 Support Vector Machines

The learners discussed above try to find cuts between the features in tables of data
that, say, predict for some class variable. An assumption of that approach is that
the data divides nearly along the lines of the existing features. Sometimes, lining
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Fig. 3.5 Data illustrating the
situation in which no split
exists parallel to the axes

Fig. 3.6 Transforming the
data into different dimensions
can make the splits obvious
[reproduced from 51,
pp. 97–104]

up with the current features may not be the best policy. Consider the data shown in
Fig. 3.5: note that there is no simple split parallel to the x-axis or y-axis that best
separates the black and the white dots.

To solve this problem, we note that what looks complex in lower dimensions
can actually be simpler in higher dimensions. If we map the two-dimensional
points x1; x2 from the above figure into the three dimensions �.x1; x2/ !
.x2

1 ; x
2
2;
p
2x1x2/, we arrive at Fig. 3.6. Note that there now exists a hyperplane

that separates the black and white dots. Formally, � is a “kernel function” that
transforms coordinates in one space into another. Support vector machines (SVMs)
are algorithms that can learn a hyperplane that separates classes in a hyper-
dimensional space [12] (for an example of such a hyperplane, see the rectangular
shape in Fig. 3.6). Combined with some kernel function �, SVMs can handle
very complex datasets. Internally, SVMs are quadratic optimizers that search for
a hyperplane that best separates the classes. A maximum margin SVMs strives to
maximize the distance of this hyperplane to the support vectors, i.e., examples from
different classes that fall to either side of the hyperplane.

In the absence of expert knowledge, a radial basis function (RBF) is the usual
default kernel. For example, here is a simple Gaussian RBF: �.r/ D exp.�."r/2/
(here, r is some distance of each example from an origin point where all values are
zero). Note that each kernel has a set of magic parameters that need to be tuned to
local domain. A standard architecture is to use some tuning learner to find the best
parameter settings—for example, when predicting software development effort,
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Corazza et al. [11] use a Tabu search to learn the parameters for their radial bias
function.

3.7 Pruning Data

In the previous section, we solved the data mining problem via adding dimensions.
In this section, we explore another approach where we delete dimensions (i.e., the
features) and/or rows in a dataset.

Many real-world datasets contain spurious, noisy, irrelevant, or redundant data.
For this reason, it is often useful to strategically prune some of the training data.
Many researchers report that it is possible to prune seemingly complex data since:

. . . the only reason any methods work in very high dimensions is that, in fact, the data are
not truly high-dimensional. Rather, they are embedded in a high-dimensional space, but can
be efficiently summarized in a space of a much lower dimension [38].

The rest of this section discusses two kinds of pruning: feature pruning and row
pruning.

3.7.1 Feature Pruning

One advantage of tree learners over naive Bayesian classifiers is that the trees can be
a high-level and succinct representation of what was learned from the data. On the
other hand, the internal data structures of a Bayesian classifier are not very pleasant
to browse. Many users require some succinct summary of those internals.

In terms of this chapter, dimensionality reduction means pruning some subset of
the features in a table. Feature selection is an active area of data mining research.
Two classic references in this area come from Kohavi and John [37] and Hall
and Holmes [25]. A repeated result is that in many datasets, most features can be
removed without damaging our ability to make conclusions about the data.

As to specific feature pruning methods, we will introduce them in three steps:

1. Near linear-time pruning methods such as InfoGain and CLIFF.
2. Polynomial-time pruning methods such as PCA and LSI.
3. Then, in Sect. 3.8, we will discuss other feature pruners especially designed for

text mining such as stop lists, stemming, and TF–IDF.

For near linear-time pruning method, recall the InfoGain method discussed
above in Sect. 3.4.5. After discretization, each feature can be scored by the entropy
resulting for dividing the class variable into the discrete values for this feature (and
better features have lower entropy, i.e., their values select for a smaller range of
class values). For each feature, this process requires an O.n log.n// sort over all the
features, but this is the slowest aspect of this feature selector. As to other near linear-
time methods, recent results show that a Bayesian classifier can easily be converted
into a feature pruner. We call this algorithm CLIFF [47]. It is detailed here as yet
another example of what can be done with a supposedly “naive” Bayesian classifier.
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Fig. 3.7 A dataset whose
first principal component is
not aligned with the Cartesian
axes

CLIFF discretizes all numeric data (using a 10 % chop) then counts how often
each discretized range occurs in each class.
Classes = all classes
for one in Classes:

two = Classes - one
c1 = |one| # number of examples in class "one"
c2 = |two| # all other examples
for f in features:

ranges = discretized(f)
for range in ranges:

n1, n2 = frequency of range in one, two
r1, r2 = n1/c1, n2/c2
f.ranges[range].value[one] = r1*r1/(r1+r2)

The equation on the last row rewards ranges that are:

• more frequent in class one (this is the r1*r1 term); and
• relatively more frequent in class one than in class two (this is in the fraction).

A range with high value is powerful in the sense that it is frequent evidence for
something that selects for a particular class. In CLIFF, we say that the power of a
range is the maximum of its values over all classes (as calculated by the above),
and the power of a feature is the maximum power of all its ranges. CLIFF can prune
features by discarding those with least power. Furthermore, within each feature, it
can prune ranges with lower power. CLIFF is very simple to implement. Once a
programmer has built a naive Bayesian classifier and a discretizer, CLIFF is 30 lines
or less in a high-level language such as Python. Our experience with this algorithm
is that it can convert large datasets into a handful of most powerful ranges that can
be discussed with a user.

Principal component analysis (PCA) [46] and latent semantic indexing
(LSI) [13] are examples of more complex polynomial methods, based on
synthesizing a small number of most-informative features. The key to this synthesis
is the rotation of the higher dimensions into lower dimensions. For example,
consider the data shown in Fig. 3.7. Clearly, for this data, the standard Cartesian
coordinate system is less informative than a new synthesized dimension that runs
through the middle of the data. Formally, we say that this two-dimensional data can
be approximated by a rotation into one-dimension along a synthesized dimension.
Such rotations are quite standard in software engineering. For example, Nagappan
et al. [44] use PCA to learn synthesized dimensions. When we applied their
technique to defect prediction, we found that we could find one simple rule within
24 features of a defect dataset: “defective if domain1 greater than 0.317.”
Here, domain1 is a dimension synthesized by PCA that is a linear combination of
the 24 features in the dataset:
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domain1=0.241*loc+0.236*v(g) +0.222*ev(g)+0.236*iv(g) +
0.241*n+0.238*v+0.086*l+0.199*d +0.216*i+0.225*e +
0.236*b+0.221*t+0.241*lOCode+0.179*lOComment +
0.221*lOBlank+0.158*lOCodeAndComment+0.163*uniqOp +
0.234*uniqOpnd+0.241*totalOp+0.241*totalOpnd +
0.236*branchCount

The important thing in this equation is the weights on the features. These weights
range from 0.158 (for number of lines of code and comment) to 0.241 (for many
things including the number of branches inside this code). That is, PCA is telling
us that for the purposes of predicting defects, code branching is 0:241

0:158
D 1:5 more

important than counts of lines of code and comment.
Under the hood, PCA builds N domains like the domain1 shown above using a

matrix-oriented approach. Standard PCA uses the correlation matrix where cell i; j
is the correlation between feature i and j . It then sorts the eigenvector of that matrix
decreasing on their eigenvalue (so domain1, shown above, would have been the first
eigenvector in that sort).4

LSI is another matrix-oriented method [13] for dimensionality reduction. LSI
decomposes a matrix of data D into three matrices U; S; V which can be combined
in order to regenerate D using D D U S V T . The middle matrix S is special:

• The non-diagonal elements of S are zero.
• The diagonal elements of S are the weights of each feature.
• The rows of S are sorted in descending order by this weight.

A smaller dataset can now be generated by removing the k lowest rows in S and the
k most right columns in V (i.e., that data relating to the least interesting features).
We denote the truncated V matrix as V 0. Now the document Di can be described
using the fewer number of features in V 0

i .

3.7.2 Row Pruning

Science seeks general principles, i.e., a small number of factors that appear in many
examples. For datasets that support such generality, we should therefore expect that
a large number of rows are actual echoes of a smaller number of general principles.

Row pruning is the art of finding exemplars for those general principles. Just
like with feature pruning, a repeated result is that most datasets can be pruned back
to a small percentage of exemplars (also known as prototypes). For example, the
prototype generators of Chang [10] replaced training sets of size (514, 150, 66)
with prototypes of size (34, 14, 6) (respectively). That is, prototypes maybe as
few as (7, 9, 9)% of the original data. If we prune a dataset in this way, then all
subsequent reasoning runs faster. Also, performance quality can improve since we
have removed strange outlier examples.

4It turns out that WHERE (described above in Sect. 3.4.5) is a heuristic method for finding the first
domain of PCA. But while PCA takes polynomial time, WHERE runs in linear time. For more on
the relationship of WHERE to PCA, see Platt [48].
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There are many ways to do row pruning (also called instance selection). This is
an active area of data mining [23]. For example, Hart [27] proposes an incremental
procedure where, starting with a random selection of the data, if a new test case
is misclassified, then it is deemed to be different to all proceeding examples. Hart
recommends selecting just those novel instances. Kocaguneli et al. [33] prefer a
clustering approach, followed by the deletion of all clusters that would confuse
subsequent inference (i.e., those with the larger variance or entropy of any numeric
or discrete class variable).

The methods of Hart and of Kocaguneli et al. are much slower than a newer
methods based on CLIFF [47]. Recall that CLIFF finds power ranges, i.e., those
ranges that tend to select for a particular class. If a row contains no power ranges,
then it is not an interesting row for deciding between one class and another. To
delete these dull rows, CLIFF scores and sorts each row by the product of the power
of the ranges in that row. If then returns the top 10 % scoring rows. Note that this
procedure runs in linear time, once the power ranges are known.

3.8 Text Mining

Up until now, this chapter has considered well-structured tables of examples. Most
real-world data does not appear in such well-structured tables. One study concluded
that:

• 80 % of business is conducted on unstructured information;
• 85 % of all data stored is held in an unstructured format (e.g., unstructured text

descriptions);
• unstructured data doubles every 3 months.

That is, if we can tame the text mining problem, it would be possible to reason and
learn from wide range of naturally occurring data.

Text mining data has a different “shape” than the tables of examples discussed
above. Consider the text of this chapter. At the time of writing this sentence, it
contains 1,574 unique words in 304 paragraphs and each line has 25 words (median).
That is, if we represented this document as one example per paragraph, then:

• each row would be 1,574 features wide;
• each row would have entries for around 25 cells, which is another way of saying

that this table would be 1 � 25
1574

D 98:4% empty.

For such mostly empty datasets, before we can apply machine learning, we have to
prune that empty space lest our learners get lost in all that nothingness.

That is, the essential problem of text mining is dimensionality reduction. There
are several standard methods for dimensionality reduction such as tokenization, stop
lists, stemming, TF–IDF.

Tokenization. Tokenization replaces punctuation with spaces. Optionally, tokeniz-
ers also send all uppercase letters to lowercase.

http://www.b-eye-network.com/view/2098
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Stopping. Stop lists remove “dull” words found in a “stop list” such as the
following:
a about across again against
almost alone along already also
although always am among amongst
amongst amount an and another
any anyhow anyone anything anyway
anywhere are around as at
... ... ... ... ...

There are many online lists of stop words, but before you use one, you should review
its contents. For example, the word “amount” is in the above stop list. However, in
an engineering domain, the word “amount” might actually be vital to understanding
the units of the problem at hand. Note also that stop world removal may be done in
a procedural manner. For example, in one domain, we find it useful to stop all words
less than four characters long.

Stemming. Stemming removes the suffixes of words with common meaning. For
example, all these words relate to the same concept:
CONNECT
CONNECTED
CONNECTING
CONNECTION
CONNECTIONS.

The stemming algorithm of Porter [49] is the standard stemming tool. It repeatedly
applies a set of pruning rules to the end of words until the surviving words are
unchanged. The pruning rules ignore the semantics of a word and just perform
syntactic pruning:
RULE EXAMPLE
---- -------
ATIONAL -> ATE relational -> relate
TIONAL -> TION conditional -> condition

rational -> rational
ENCI -> ENCE valenci -> valence
ANCI -> ANCE hesitanci -> hesitance
IZER -> IZE digitizer -> digitize
ABLI -> ABLE conformabli -> conformable
ALLI -> AL radicalli -> radical
ENTLI -> ENT differentli -> different
ELI -> E vileli -> vile
OUSLI -> OUS analogousli -> analogous
IZATION -> IZE vietnamization -> vietnamize
ATION -> ATE predication -> predicate
ATOR -> ATE operator -> operate
ALISM -> AL feudalism -> feudal
IVENESS -> IVE decisiveness -> decisive
FULNESS -> FUL hopefulness -> hopeful
OUSNESS -> OUS callousness -> callous
ALITI -> AL formaliti -> formal
IVITI -> IVE sensitiviti -> sensitive
BILITI -> BLE sensibiliti -> sensible

http://www.ranks.nl/resources/stopwords.html
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Porter’s stemming algorithm has been coded in many languages and comes standard
with many text-mining toolkits. The algorithm runs so quickly that there is little
overhead in applying it.

TF–IDF. Term frequency—inverse document frequency (TF–IDF) is a calculation
that models the intuition that jargon usually contains technical words that appear a
lot, but only in a small number of paragraphs. For example, in a document describing
a spacecraft, the terminology relating to the power supply may appear frequently in
the sections relating to power, but nowhere else in the document.

Calculating TF–IDF is a relatively simple matter. Let t and d be the word
and document of interest, respectively, and let D be the set of documents under
consideration (d 2 D). The term frequency (TF) of t in d is simply the count of
occurrences of t in d ; however, this will lead to a bias towards longer documents,
so normalization by the frequency of the most common word in the document is
standard. The inverse document frequency is the inverse ratio of the number of
documents containing t to the total number of documents; in order to stop the inverse
document frequency growing so large (for some entries) that it dominates all over
entries, its logarithm is used:

tf–idf.t; d;D/ D TF.t; d /

arg maxw2d TF.w; d /
� log

� jD j
j fd 2 D W t 2 d g j

�

:

There are three important aspects of TF–IDF that deserve our attention:

• It takes linear time to compute (so it scales to large datasets) and that computation
is very simple to code (one implementation of the author, in a high-level scripting
language, was less than 20 lines long).

• When applied to natural language texts, it is often than case that the majority
of words have very low TF–IDF scores. That is, we just use the (say) 100 most
important terms (as ranked by TF–IDF) then we can prune away vast numbers of
uninformative words.

Other Text Mining Methods. The above sequence can be summarized as follows:

Tokenization ! Stopping ! Stemming ! TF–IDF

Note that this sequence takes linear time (so it scales to very large datasets). For
complex domains, other methods may be required such as the InfoGain, PCA, and
LSI methods discussed above. For example, a standard implementation is to use the
V 0 matrix (from LSI) and find nearby words using cosine similarity, see Eq. (3.1).

http://www.tartarus.org/martin/PorterStemmer
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3.9 Nearest-Neighbor Methods

Model-based methods such as decision tree learners first build some model (e.g., a
decision tree), then use that model to reason about future examples.

Another approach is instance-based reasoning that reasons about new examples
according to their nearest neighbors. This style of learning is called lazy learning
since nothing happens until the new text example arrives. This lazy approach can be
quite slow so it is customary to add a preprocessor step that clusters the data. Once
those clusters are known, then it is faster to find similar examples, as follows:

• find the nearest cluster to the new test example;
• ignore everything that is not in that cluster; and
• find similar examples, but only looking in that cluster.

Clustering is an unsupervised learning algorithm in that, during clustering, it ignores
any class feature. This is a very different approach to nearly all the algorithms above,
which were supervised, i.e., they treated the class feature in a way that was special
and different to all the other features. The only exception was Apriori that does not
treat any feature different to any other (so it is unsupervised).

A core issue within clustering is how to measure the distance between rows
of examples. For example, some use a kernel function to compute a weighted
distance between rows. Much could be said on these more complex approaches but
presenting that material would be a chapter all on its own. Suffice it to say that with
a little column pruning, sometimes very simple functions suffice [35].

For example, consider the overlap defined for discretized data where the distance
between two rows is the number of ranges that occur in both rows. Note that this
overlap measure scales to very large datasets, using a reverse index that records
what ranges occur in what rows. Given that reverse index, simple set intersection
operators on the reverse index can then quickly find:

• if any two rows have no shared ranges (so distance D infinity);
• otherwise, the distance between two rows is the number of shared ranges.

This measure is used by McCallum et al. [39] in their work on canopy clustering
(discussed below) and by the W2 instance-based planner [5]. W2 accepts as input
the context that is of interest to some manager, i.e., a subset of the data features that
mention a subset of the feature ranges. W2 is discussed in Fig. 3.8.

Two other distance measures, which make more use of the specific distances
between values, are the cosine dissimilarity and the Minkowski distance. Consider
two rows in the database, x and y, with features 1; 2; 3; : : : ; f . In cosine dissimi-
larity, the distance is least when the angle between two rows is zero. This can be
calculated using the following equation:

dist.x; y/ D 1 �
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W2 is an example of nearest neighbor inference using a simple overlap distance measure:

• A manager might pose the question: “What is the best action for projects in which
programmer capability equals low or very low and the database size is large or very
large”.

• W2 finds the K projects nearest this context (sorted by their overlap).
• Next, for the first time in all this processing, W2 looks at the class variable which

might contain information (say) about the development time of the projects. It then
divides the projects into the k1 projects it likes (those with lowest development ef-
fort) and the k2 is does not (and K = k1 + k2).

• Next, it sorts the ranges by the value of each range (as defined in the discussion on
CLIFF in Sect. 3.7.1).

• Lastly, it conducts experiments where the first i items in that sorted range of values
are applied to some holdout set.

As output, W2 prints its recommendations back to the manager. That manager gets a list
of things to change in the project. That list contains the first i terms in the list of sorted
items that select for projects in the hold out set with least (say) development time.

Fig. 3.8 A description of W2

The Minkowski distance is really a family of distance measures controlled by the
variable p:

dist.x; y/ D
 
X

i

.wi jxi � yi jp/
!1=p

(3.2)

Here, wi is the some weight given to each feature (the larger this weight, the more
importance is given to that feature). At p D 1, this is the Manhattan (or city-block)
distance. At p D 2, this is the standard Euclidean distance measure.

This Euclidean distance is used in the classic paper on instance-based reasoning
by Aha et al. [2]. Their method allows us to handle missing data as well as datasets
with both numeric and non-numeric features. This measure begins by normalizing
all numerics min to max, 0 to 1. Such normalization has many benefits:

• Normalization lets us compare distances between numerics of different scale. To
see why this is an issue, consider a database that lists rocket speeds and astronaut
shoe sizes. Even if an astronaut shoe size increases by 50 % from 8 to 12, that
difference would be lost when compared to rocket speeds (which can range from
0 to 41�106 meters per second). If we normalize all numerics zero to one, then a
100 % change in shoe size (that can range from 0 to 20) will not be lost amongst
any changes to the rocket speed.

• Normalization let us compare distances between numeric and discrete features.
Aha et al. offer the following distance measure for non-numerics: if two non-
numeric values are the same, then their separation is zero; else, it is one. That
is, the maximum difference for non-numerics is the same maximum difference
for any normalized numeric value. If we combine numeric normalization with
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the rule of Aha et al., then we can compare rows that contain numeric and non-
numeric features.

Aha et al. also offer a method for handling missing data. The intuition behind this
method is that if a value is missing, assume the worst case and return the maximum
possible value. To implement that they recommend the following procedure when
finding the difference between two values xi and yi from feature i :

• If both values are missing, return the maximum distance (assuming normalized
data, then this maximum value is one).

• If the feature is non-numeric:

– If one is absent, return one.
– Else if the values are the same, return zero.
– Else, return one.

• If the feature is numeric, then:

– If only one value is present, then return the largest of 1 and that value.
– Otherwise return xiyi .

Now that we can compute xi � yi , we can use the Euclidean measure:

r
X

i
wi .xi � yi /2 =

r
X

i
wi

where wi is some weight that defaults to one (but might otherwise be set by feature
pruning tools described previously). Note that if we use normalized values for xi
and yi , then this value returns a number in the range zero to one.

Note that for small datasets, it is enough to implement this distance function,
without any clustering. The standard k-nearest neighbors algorithm generates
predictions by finding the k rows nearest any new test data, then reporting the (say)
median value of the class variable in that sample.

Returning now to clustering, this is a large and very active area of research [29,
30]. The rest of this chapter discusses a few fast and scalable clustering algorithms.

3.10 Some Fast Clustering Methods

DBScan [18] uses some heuristics to divide the data into neighborhoods. For all
neighborhoods that are not clustered, it finds one with enough examples in an
adjacent neighborhood (where enough is a domain-specific parameter). A cluster is
then formed of these two neighborhoods, and the process repeats for any neighbors
of this expanding cluster.
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Canopy clustering [39] is a very fast distance measure used extensively at Google
to divide data into groups of nearby items called canopies. Then it performs more
elaborate (and more CPU expensive) analysis, but only within these canopies.

Farnstrom et al. [19] proposed a modification to the standard K-means algorithm.
These modifications allow for incremental learning of clusters. In standard K-means,
K rows are picked at random to be the centroids. All the other rows are then labeled
according to which row is nearest. Each centroid is then moved to the middle of all
the rows with that label. The process repeats until the centroid positions stabilize.
Note that K-means can be slow since it requires repeated distance measurements
between all centroids and all rows. Also, it demands that all the rows are loaded
into RAM at one time. Farnstrom et al. fix both these problems with their simple
single-pass k-means (SSK) algorithm:

• Work through the data in batches of size, say, 1 % (ideally, selected at random).
• Cluster each batch using K-means.
• For each new batch, call K-means to adjust the clusters from the last batch for

the new data.
• New data is only added to the old clusters it is not anomalous (as defined by the

Farnstrom et al. anomaly detector, mentioned above).
• In theory, this might result in some old centroid now having no data from the

new 1 % of the data. In this case, a new centroid is created using the most distant
point in the set of anomalous data (but in practice, this case very rarely happens).

Another fast clusterer based on K-means is mini-batch K-means [54]. Like SSK, this
algorithm processes the data in batches. However, this algorithm is much simpler
than SSK:

• Each centroid maintains a count v of the number of rows for which that centroid
is the nearest neighbor.

• The data is read in batches of size M .
• The fewer the rows that used that centroid, the more it must be moved to a new

position. Hence, after each batch has updated v:

– Compute n D 1=v.
– For each centroid:

� Recall all rows r in the batch that found this centroid to be its nearest
neighbor.

� For each such row, move all values c in it towards r by an amount

.1 � n/c C nr

(note that large v implies small n which translates to “do not move the
heavily used centroids very much”).

Sculley [54] reports that this approach runs orders of magnitude faster than standard
k-means. Also, it is an incremental algorithm that only needs RAM for the current
set of centroids and the next batch. But how to determine the right number of
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centroids? One method, which we adapt from the GenIc incremental cluster [24], is
to pick a medium number of cluster; then, after each prune:

• Let each cluster contain c items.
• Find and delete the x dull centroids with c=C �N < rand./, where C is the sum

of all the c values from the N clusters.
• If x > C=4, then set x to C=4.
• Select any x rows at random and add them to the set of centroids. Note that this

either replaces dull centroids or adds new centroids if we do not have enough.

Note that the Farnstrom et al. approach and mini-batch K-means satisfy the famous
Data Mining Desiderata [4]. According to that decree, a scalable data miner has the
following properties:

• It requires one scan (or less) of the database if possible: a single data scan is
considered costly, early termination if appropriate is highly desirable.

• It is online “anytime” behavior: a “best” answer is always available, with status
information on progress, expected remaining time, etc. provided.

• It is suspendible, stoppable, resumable; incremental progress saved to resume a
stopped job.

• It has the ability to incrementally incorporate additional data with existing
models efficiently.

• It works within confines of a given limited RAM buffer.
• It utilizes variety of possible scan modes: sequential, index, and sampling scans

if available.
• It has the ability to operate on forward-only cursor over a view of the database.

This is necessary since the database view may be a result of an expensive
join query, over a potentially distributed data warehouse, with much processing
required to construct each row (case).

Once the clusters are created, then it is not uncommon practice to apply a supervised
learner to the data in each cluster. For example:

• NBTrees uses a tree learner to divide the data, then builds one naive Bayesian
classifier for each leaf [36].

• WHERE applies the principle of envy to clustered data. Each cluster asks “who is
my nearest cluster with better class scores than me?” Data mining is then applied
to that cluster and the resulting rules are applied back to the local cluster [40].
WHERE built those rules using a more intricate version of W2, described above.

There are several advantages to intra-cluster learning:

• The learner runs on fewer examples. For example, WHERE builds a tree of
clusters whose leaves contain the square root of the number of examples in
the whole dataset. For any learner that takes more than linear time to process
examples, running multiple learners on the square root of the data is faster than
running one learner on all the data.
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• The learner runs on a more homogeneous set of examples. To increase the
reliability of the predictions from a data miner, it is useful to build the learner
from similar examples. By learning on a per-cluster basis, a learner is not
distracted by dissimilar examples in other clusters. In the case of WHERE, we
found that the predictions generated per-cluster were much better than those
found after learning from all the data (and by “better” we mean lower variance
in the predictions and better median value of the predictions).

3.11 Conclusion

This chapter has been a quick overview of a range of data mining technology. If the
reader wants to read further than this material, then the following material may be
of interest:

• The Quora discussion list on data mining.
• The KDnuggets news list.
• The many excellent data mining texts such as Witten et al. [57] or all the learning-

related sections of Russell and Norvig [52].
• The proceedings of the annual conferences, Mining Software Repositories and

PROMISE.

Also, for a sample of data mining methods and applications to RSSEs, see the other
chapters in this book.
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1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large
databases. In: Proceedings of the ACM SIGMOD International Conference on Management
of Data, pp. 207–216 (1993). DOI 10.1145/170035.170072

2. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1),
37–66 (1991). DOI 10.1023/A:1022689900470

3. Boley, D.: Principal direction divisive partitioning. Data Min. Knowl. Discov. 2(4), 325–344
(1998). DOI 10.1023/A:1009740529316

4. Bradley, P.S., Fayyad, U.M., Reina, C.: Scaling clustering algorithms to large databases.
In: Proceedings of the International Conference on Knowledge Discovery and Data Mining,
pp. 9–15 (1998)

5. Brady, A., Menzies, T.: Case-based reasoning vs parametric models for software quality
optimization. In: Proceedings of the International Conference on Predictor Models in Software
Engineering, pp. 3:1–3:10 (2010). DOI 10.1145/1868328.1868333

6. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees.
Chapman and Hall/CRC, Boca Raton, FL (1984)

7. Breimann, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001).
DOI 10.1023/A:1010933404324

http://www.kdnuggets.com/news/
http://www.quora.com/Data-Mining


www.manaraa.com

3 Data Mining 73

8. Catlett, J.: Inductive learning from subsets, or, Disposal ofexcess training data consid-
ered harmful. In: Proceedings of the Australian Workshop on Knowledge Acquisition
forKnowledge-Based Systems, pp. 53–67 (1991)

9. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput. Surv. 41,
15:1–15:58 (2009). DOI 10.1145/1541880.1541882

10. Chang, C.L.: Finding prototypes for nearest neighbor classifiers. IEEE Trans. Comput. 23(11),
1179–1185 (1974). DOI 10.1109/T-C.1974.223827

11. Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Sarro, F., Mendes, E.: How effective is
tabu search to configure support vector regression for effort estimation? In: Proceedings of the
International Conference on Predictor Models in Software Engineering, pp. 4:1–4:10 (2010).
DOI 10.1145/1868328.1868335

12. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995).
DOI 10.1023/A:1022627411411

13. Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing by latent
semantic analysis. J. Am. Soc. Inform. Sci. 41(6), 391–407 (1990). DOI 10.1002/(SICI)1097-
4571(199009)41:6h391::AID-ASI1i3.0.CO;2-9

14. Dejaeger, K., Verbeke, W., Martens, D., Baesens, B.: Data mining techniques for software
effort estimation: A comparative study. IEEE Trans. Software Eng. 38, 375–397 (2012).
DOI 10.1109/TSE.2011.55

15. Domingos, P., Pazzani, M.J.: On the optimality of the simple Bayesian classifier under zero-one
loss. Mach. Learn. 29(2–3), 103–130 (1997). DOI 10.1023/A:1007413511361

16. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of con-
tinuous features. In: Proceedings of the International Conference on Machine Learning,
pp. 194–202 (1995)

17. Durstenfeld, R.: Algorithm 235: Random permutation. Comm. ACM 7(7), 420 (1964).
DOI 10.1145/364520.364540

18. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters
in large spatial databases with noise. In: Proceedings of the International Conference on
Knowledge Discovery and Data Mining, pp. 226–231 (1996)

19. Farnstrom, F., Lewis, J., Elkan, C.: Scalability for clustering algorithms revisited. SIGKDD
Explor. Newslett. 2(1), 51–57 (2000). DOI 10.1145/360402.360419

20. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for
classification learning. In: Proceedings of the International Joint Conference on Artificial
Intelligence, pp. 1022–1029 (1993)

21. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an appli-
cation to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997). DOI 10.1006/jcss.1997.1504

22. Gama, J., Pinto, C.: Discretization from data streams: Applications to histograms and data min-
ing. In: Proceedings of the ACM SIGAPP Symposium on Applied Computing, pp. 662–667
(2006). DOI 10.1145/1141277.1141429

23. Garcia, S., Derrac, J., Cano, J.R., Herrera, F.: Prototype selection for nearest neighbor
classification: Taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 34(3),
417–435 (2012). DOI 10.1109/TPAMI.2011.142

24. Gupta, C., Grossman, R.: GenIc: A single pass generalized incremental algorithm for clus-
tering. In: Proceedings of the SIAM International Conference on Data Mining, pp. 147–153
(2004)

25. Hall, M.A., Holmes, G.: Benchmarking attribute selection techniques for discrete
class data mining. IEEE Trans. Knowl. Data Eng. 15(6), 1437–1447 (2003).
DOI 10.1109/TKDE.2003.1245283

26. Hand, D.J.: Classifier technology and the illusion of progress. Stat. Sci. 21(1), 1–14 (2006).
DOI 10.1214/088342306000000060

27. Hart, P.: The condensed nearest neighbor rule. IEEE Trans. Inform. Theory 14(3), 515–516
(1968). DOI 10.1109/TIT.1968.1054155

28. Hedges, L.V., Olkin, I.: Nonparametric estimators of effect size in meta-analysis. Psychol.
Bull. 96(3), 573–580 (1984)



www.manaraa.com

74 T. Menzies

29. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666
(2010). DOI 10.1016/j.patrec.2009.09.011

30. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Comput. Surv. 31(3),
264–323 (1999). DOI 10.1145/331499.331504

31. Kampenes, V.B., Dybå, T., Hannay, J.E., Sjøberg, D.I.K.: A systematic review of effect size
in software engineering experiments. Inform. Software Tech. 49(11–12), 1073–1086 (2007).
DOI 10.1016/j.infsof.2007.02.015

32. Knuth, D.E.: The Art of Computer Programming, vol. 2: Seminumerical Algorithms, 3rd edn.
Addison-Wesley, Boston, MA (1998)

33. Kocaguneli, E., Menzies, T., Bener, A., Keung, J.: Exploiting the essential assumptions
of analogy-based effort estimation. IEEE Trans. Software Eng. 28(2), 425–438 (2012a).
DOI 10.1109/TSE.2011.27

34. Kocaguneli, E., Menzies, T., Keung, J.: On the value of ensemble effort estimation. IEEE
Trans. Software Eng. 38(6), 1403–1416 (2012b). DOI 10.1109/TSE.2011.111

35. Kocaguneli, E., Menzies, T., Keung, J., Cok, D., Madachy, R.: Active learning and effort
estimation: Finding the essential content of software effort estimation data. IEEE Trans.
Software Eng. 39(8), 1040–1053 (2013). DOI 10.1109/TSE.2012.88

36. Kohavi, R.: Scaling up the accuracy of naive-Bayes classifiers: A decision-tree hybrid. In:
Proceedings of the International Conference on Knowledge Discovery and Data Mining,
pp. 202–207 (1996)

37. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324
(1997). DOI 10.1016/S0004-3702(97)00043-X

38. Levina, E., Bickel, P.J.: Maximum likelihood estimation of instrinsic dimension. In:
Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17,
pp. 777–784. MIT Press, Cambridge, MA (2005)

39. McCallum, A., Nigam, K., Ungar, L.H.: Efficient clustering of high-dimensional datasets with
application to reference matching. In: Proceedings of the ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 169–178 (2000). DOI 10.1145/347090.347123

40. Menzies, T., Butcher, A., Cok, D., Marcus, A., Layman, L., Shull, F., Turhan, B.,
Zimmermann, T.: Local vs. global lessons for defect prediction and effort estimation. IEEE
Trans. Software Eng. 39(6), 822–834 (2013). DOI 10.1109/TSE.2012.83

41. Menzies, T., Turhan, B., Bener, A., Gay, G., Cukic, B., Jiang, Y.: Implications of ceiling effects
in defect predictors. In: Proceedings of the International Workshop on Predictor Models in
Software Engineering (2008). DOI 10.1145/1370788.1370801

42. Minku, L.L., Yao, X.: DDD: A new ensemble approach for dealing with concept drift. IEEE
Trans. Knowl. Data Eng. 24(4), 619–633 (2012). DOI 10.1109/TKDE.2011.58

43. Mittas, N., Angelis, L.: Ranking and clustering software cost estimation models through
a multiple comparisons algorithm. IEEE Trans. Software Eng. 39(4), 537–551 (2012).
DOI 10.1109/TSE.2012.45

44. Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures.
In: Proceedings of the ACM/IEEE International Conference on Software Engineering,
pp. 452–461 (2006). DOI 10.1145/1134285.1134349

45. Pearson, K.: I. mathematical contributions to the theory of evolution—VII. on the correlation
of characters not quantitatively measurable. Phil. Trans. Roy. Soc. Lond. Ser. A 195, 1–47 &
405 (1900)

46. Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. Phil. Mag.
2(11), 559–572 (1901). DOI 10.1080/14786440109462720

47. Peters, F., Menzies, T., Gong, L., Zhang, H.: Balancing privacy and utility in cross-
company defect prediction. IEEE Trans. Software Eng. 39(8), 1054–1068 (2013).
DOI 10.1109/TSE.2013.6

48. Platt, J.C.: FastMap, MetricMap, and Landmark MDS are all Nyström algorithms.
In: Proceedings of the International Workshop on Artificial Intelligence and Statistics,
pp. 261–268 (2005)



www.manaraa.com

3 Data Mining 75

49. Porter, M.F.: An algorithm for suffix stripping. Program Electron. Libr. Inform. Syst. 14(3),
130–137 (1980). DOI 10.1108/eb046814

50. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco
(1993)

51. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall,
Englewood Cliffs, NJ (2003)

52. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall,
Englewood Cliffs, NJ (2009)

53. Scott, A.J., Knott, M.: A cluster analysis method for grouping means in the analysis of variance.
Biometrics 30(3), 507–512 (1974)

54. Sculley, D.: Web-scale k-means clustering. In: Proceedings of the International Conference on
the World Wide Web, pp. 1177–1178 (2010). DOI 10.1145/1772690.1772862

55. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423
(1948a)

56. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(4), 623–656
(1948b)

57. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and
Techniques, 3rd edn. Morgan Kaufmann, San Francisco, CA (2011)

58. Yang, Y., Webb, G.I.: Discretization for naive-Bayes learning: Managing discretization bias
and variance. Mach. Learn. 74(1), 39–74 (2009). DOI 10.1007/s10994-008-5083-5



www.manaraa.com

Chapter 4
Recommendation Systems in-the-Small

Laura Inozemtseva, Reid Holmes, and Robert J. Walker

Abstract Many recommendation systems rely on data mining to produce their
recommendations. While data mining is useful, it can have significant implications
for the infrastructure needed to support and to maintain an RSSE; moreover, it
can be computationally expensive. This chapter examines recommendation systems
in-the-small (RITSs), which do not rely on data mining. Instead, they take small
amounts of data from the developer’s local context as input and use heuristics to
generate recommendations from that data. We provide an overview of the burdens
imposed by data mining and how these can be avoided by a RITS through the use of
heuristics. Several examples drawn from the literature illustrate the applications and
designs of RITSs. We provide an introduction to the development of the heuristics
typically needed by a RITS. We discuss the general limitations of RITSs.

4.1 Introduction

Many recommendation systems rely on data mining, that is, attempting to discover
useful patterns in large datasets. While such recommendation systems are helpful,
it is not always practical to create, maintain, and use the large datasets they require.
Even if this issue is resolved, data mining can be computationally expensive, and
this may prohibit interactive use of the recommendation system during development.
For these reasons, RSSE researchers have developed a number of recommendation
systems in-the-small (RITSs): systems that base their recommendations on the
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developer’s immediate context, possibly using heuristics to compensate for the
smaller amount of available data.

This chapter introduces this class of recommendation systems. Section 4.2
explains what recommendation systems in-the-small are by comparing a RITS
with a system that uses data mining to generate its recommendations. Section 4.3
demonstrates the diversity of RITSs by introducing a few example systems from
different application areas. Section 4.4 describes how the heuristics typically used
in RITSs can be generated and the pros and cons of each method; we make the
discussion more concrete by revisiting the recommendation systems discussed in
Sect. 4.3. Section 4.5 discusses some of the limitations of this class of recommenda-
tion systems. Section 4.6 concludes the chapter and provides suggestions for further
reading.

4.2 Recommendations with and without Data Mining

To illustrate the difference between RITSs and recommendation systems that use
data mining to generate their recommendations, which we refer to as data mining
recommendation systems (DMRSs), we examine a RITS and a DMRS that solve the
same problem in different ways.

Consider the problem of finding code elements (functions, variables, etc.) that
are relevant to a given task. This is an issue that software developers frequently
face as they fix bugs, add new features, or perform other maintenance tasks. In
fact, one study estimates that developers spend 60–90 % of their time reading and
navigating code [3]. However, finding relevant code can be difficult. Basic lexical
searches are one possible strategy, but are often insufficient since the developer may
not know the correct search term to use. Even if the developer can find some of the
relevant elements, it has been shown that it is difficult for a developer to faithfully
find all dependencies from an entity [5]. A recommendation system that can suggest
relevant code elements would therefore be helpful to developers.

Robillard [10] tackled this problem by developing a RITS called Suade. Suade
takes as input a set of code elements that are known to be relevant to the developer’s
task and produces as output a ranked list of other code elements that are also likely to
be relevant. Suade produces these recommendations by doing a localized analysis
of the program’s dependency graph to identify relevant elements. It does this in
two steps. First, Suade builds a graph of the code elements in the project and the
relationships that exist between them, such as function calls and variable accesses.
When a developer initiates a query, Suade identifies elements in the graph that have
a direct structural relationship to the known-relevant elements. It then uses two
heuristics to rank the related elements from most to least likely to be relevant. We
describe these heuristics in more detail in Sect. 4.3.

Though Suade builds a graph of relationships between code elements, it is a
RITS because it does not generate recommendations by mining the full graph for
patterns. Rather, it takes a small amount of localized information as input. The graph
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is only used to look up information about relationships; heuristics are used to rank
the recommendations.

Zimmermann et al. [14] took a different approach and built a DMRS called
eROSE (originally called ROSE). eROSE mines the project’s version control system
to identify program elements that are frequently changed together (in the same
commit). This information is used to identify relevant elements, on the assumption
that elements that changed together in the past will likely change together in the
future. More specifically, when a developer modifies a program element e as part
of a maintenance task, eROSE presents a list of other program elements that may
need to be changed, ranked by how confident the system is about the necessity of
the change. The confidence value for each recommended element e0 is based on two
factors: first, the number of times e and e0 have occurred in the same commit in the
past; and second, out of the total number of times e was changed in the past, the
percentage of those times that e0 also changed.

eROSE is a DMRS because it must mine a version control system to identify
commits in order to produce a recommendation. Given that source code is updated
incrementally, it may be possible for eROSE to update its database incrementally,
but it is not possible to avoid data mining completely.

RITSs and DMRSs have different strengths. Data mining can reveal patterns
that RITSs might miss. For example, eROSE’s recommendations are not limited
to source code: if a documentation file always appears in the same change set as a
source code file, eROSE can identify that relationship. Suade cannot do this because
it uses a graph of relationships that are specific to a programming language; while
in principle it could be adapted to work for any programming language, this would
require targeted development to accomplish.

That said, RITSs tend to be more lightweight and produce recommendations
more quickly. In this case, eROSE is not particularly slow, and could be used inter-
actively, but in general, mining a repository on every query can be computationally
expensive and may not scale well to large projects. In addition, a repository of data
must have been collected for the DMRS to mine. For eROSE, the history of commits
must have been collected over time; when a project is new, there is no history and
DMRSs can provide no help (this is known as the cold start problem [11]). A RITS
is not subject to the cold start problem.

Figure 4.1 shows these differences diagrammatically. The general structure of
the two diagrams is identical: the developer builds the recommendation system;
then, the developer uses the recommendation system, issuing queries and receiving
recommendations. The key difference is: for the RITS (on the left), the developer
must determine one or more heuristics to build into the recommendation system
before it can be used; for the DMRS (on the right), the recommendation system
must mine its data source. If the data source is unchanging, the DMRS would not
need to repeat the mining step in principle, but could simply make use of the patterns
it had already detected; this is effectively a caching optimization.
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Developer builds
RITS; generates

heuristics

Query is
initiated

RITS generates
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a

Developer
builds DMRS

Query is
initiated

DMRS generates
recommendations

Repository is mined

bFig. 4.1 Flowcharts
illustrating how
recommendation systems are
built and used. (a) Building
and using a RITS.
(b) Building and using a
DMRS

4.3 The Versatility of Recommendation Systems in-the-Small

In this section we demonstrate the versatility of recommendation systems in-the-
small by describing several from the literature: Suade (in more detail); Strathcona;
Quick Fix Scout; an unnamed Java method-name debugger; and YooHoo. These
five tools illustrate the variety of tasks that RITSs can perform; they also provide an
introduction to the development and inherent constraints of RITSs.

4.3.1 Suade: Feature Location

As noted above, Suade helps developers find code elements that are likely to be
relevant to a particular task. It uses two heuristics to rank the results from most to
least likely to be relevant. The first heuristic, which Robillard refers to as specificity,1

considers how “unique” the relationship is between a given element and the known-
relevant elements. Consider Fig. 4.2. Each node represents a code element. The
shaded elements (D, E, and F) are known to be relevant to the current task, while the
unshaded elements (A, B, and C) may or may not be relevant. Arrows represent a

1Not to be confused with the term that is synonymous with true negative rate.
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A: TestResult.addListener(TestListener)

B: TestResult.addError(Test, Throwable)

C: TestResult.addFailure(Test, AssertionFailedError)

D: TestResult.failureCount()

E: ArrayList<?>.add(?)

F: ArrayList<TestFailure>

Fig. 4.2 An example showing specificity and reinforcement using relationships from JUnit’s
TestResult class. The gray elements are known to be relevant; the white elements are of
unknown relevance. Arrows represent a uses relationship. C is both more specific and more
reinforced than A and B

uses relationship; for example, the addListener(TestListener) method (node A)
calls the add(?) method (node E). In this figure, node E has three neighbors
of unknown relevance: A, B, and C. However, node F only has one neighbor of
unknown relevance: C. C therefore has a more “unique” relationship with a known-
relevant element than A or B do, so it will be given a higher specificity score. That
is, Suade thinks C is more likely to be relevant to the current task than A or B.

The second heuristic, reinforcement, considers how many of the neighbors of
a known-relevant element are also known to be relevant. In the figure, F has two
neighbors, C and D. D is known to be relevant, so it seems likely that C is also
relevant, since it is the “odd one out.” Node E has three neighbors, and none of them
are known to be relevant, so there is no particular reason to think any of the three
are in fact relevant. Suade will therefore give C a higher reinforcement score than A
or B. That is, Suade thinks C is more likely to be relevant to the current task than A
or B.

The results of these two heuristics are combined so that an element that is both
specific and reinforced is preferred to one that is specific but not reinforced or
vice versa. Suade does not use a threshold value to limit the number of displayed
results; all elements that are related to the known-relevant elements are shown to the
developer in their ranked order.

Suade illustrates that RITSs can be used for code exploration and understanding
tasks. Though RITSs use only the developer’s context as input, they can identify
useful information in other parts of the developer’s project without mining its source
code or associated metadata.
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public class MyView extends ViewPart {
public void updateStatus(String msg) {
Action run = new Action("Run", IAction.AS_CHECK_BOX);
...
IStatusLineManager.setMessage(msg);

}
}

Listing 4.1 An example of a code snippet that could be submitted to Strathcona as a query.
Strathcona will look for examples with similar structural properties; for example, methods in the
corpus that also call Action.Action(String, int)

4.3.2 Strathcona: API Exploration

Holmes et al. [6] noted that developers sometimes have difficulty using unfamiliar
APIs. These developers often look for examples of correct API usage to help them
complete their tasks. Unfortunately, such examples are not always provided in
the project documentation. The authors created a RITS called Strathcona to help
developers locate relevant source code examples in a large code corpus. Queries
are formed by extracting structural information from the developer’s integrated
development environment (IDE) and using this information to locate examples that
have similar structure. Four heuristics are used to measure the structural similarity
between the developer’s code and a given example from the corpus. Like Suade,
Strathcona uses a data repository but does not use data mining to find patterns in the
repository; it simply looks up information about examples.

The two simplest heuristics locate examples that make the same method calls
and field references as the query. For example, if the developer were to query
Strathcona in a file containing the code snippet shown in Listing 4.1, the calls
heuristic would locate all methods in the corpus that call Action.Action(String,
int) and IStatusLineManager.setMessage(String). If no method calls both
of these methods, then methods that call one or the other would be returned. The
references heuristic would locate all methods in the corpus that contain a reference
to Action.AS_CHECK_BOX.

While these two simple heuristics excel at locating examples that use specific
methods and fields, they are not good at identifying more general examples.
Strathcona uses two additional heuristics to address this shortcoming. Rather than
focusing on specific methods and fields, the uses heuristic looks at the containing
types of the code elements (e.g., IStatusLineManager, Action, and IAction

in Listing 4.1) and tries to find methods that use these types in any way. The
inheritance heuristic also works more broadly, locating any classes that have the
same parent classes as the query (e.g., classes that extend ViewPart for the query in
Listing 4.1). These heuristics are more general than the previous two heuristics and
usually match many more code examples.
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Strathcona does not weight the heuristics; instead, every example is assigned
a score that is the sum of the number of heuristics that it matched. The top ten
examples are returned to the developer.

Strathcona illustrates that RITSs can be used for API exploration and code
maintenance tasks. Even without data mining, RITSs can harness the knowledge
of other programmers to help a developer write new code. In this case, Strathcona’s
heuristics allow it to find useful examples without mining the example repository.

4.3.3 Quick Fix Scout: Coding Assistance

The Eclipse IDE has many features to make development easier, one of which is
quick fix suggestions. When a program has a compilation error, these suggestions
allow developers to automatically perform tasks that may resolve the error. For
example, if the developer types “public sTRING name,” the dialog box will rec-
ommend changing “sTRING” to “String.” Unfortunately, for more complex errors,
the outcome of these quick fix tasks is unpredictable and may even introduce new
errors. Muşlu et al. [8] created an Eclipse plugin called Quick Fix Scout that uses
speculative analysis to recommend which quick fix to use. More precisely, it applies
each quick fix proposal to a copy of the project, attempts to compile the resulting
program, and counts the number of compilation errors. The plugin does this for each
suggested quick fix and reorders the suggestions in the quick fix dialog so that the
fixes that result in the fewest compilation errors are the top suggestions. Any two
fixes that result in the same number of errors are kept in their original relative order.
The heuristic used here is simply that fewer compilation errors are better.

Quick Fix Scout also augments the quick fix dialog box with the global best fix.
Sometimes the best suggestion to fix a given compilation error is not found at the
error location itself, but at some other program point. Quick Fix Scout checks all
suggestions at all error locations to identify the best fix overall, rather than just at
the individual program point queried by the developer. The global best fix is shown
as the top suggestion in the Quick Fix Scout dialog box.

Quick Fix Scout illustrates that RITSs can help with the day-to-day work of
development: their use of heuristics and small amounts of data make them fast
enough to use interactively, which is not always the case for DMRSs. A DMRS
developer would probably use static analysis for this application, while Quick Fix
Scout can use the simpler “try it and see” approach.

4.3.4 A Tool for Debugging Method Names: Refactoring
Support

Høst and Østvold [7] noted that Java programs are much more difficult to understand
and maintain when the methods do not have meaningful names, that is, names that
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accurately describe what the methods do. As a concrete example, a method named
isEmpty that returns a string is probably poorly named.

To address this, the authors developed a tool that automatically checks whether
a given method’s name matches its implementation. The authors used natural
language program analysis on a large corpus of Java software to develop a “rule
book” for method names, i.e., a set of heuristics that are built into the tool. To return
to our previous example, a possible rule is that a method named isAdjective(...)

should return a Boolean value. The tool compares the name of a method in the
developer’s program to its implementation using these rules and determines if it
breaks the rules, which the authors call a naming bug. If a naming bug is present,
the tool generates recommendations for a more suitable name. Specifically, it returns
two suggestions: the (roughly speaking) most popular name that has been used for
similar methods without resulting in a naming bug; and the name that is (again,
roughly speaking) most similar to the current name that does not result in a naming
bug. The tool does not use a threshold value when displaying results: it merely
displays a list of methods that have naming bugs and two recommended replacement
names for each one.

This tool illustrates that RITSs can support refactoring tasks. Moreover, they
can obtain many of the benefits of data mining without using it online to generate
recommendations. By using data mining to generate heuristics that are built into the
tool, the recommendation system can produce better recommendations without the
recurring cost of data mining.

4.3.5 YooHoo: Developer Awareness

One downside of relying on external libraries is that it can be hard for developers
to keep apprised of when these libraries are updated. If a library is updated
in a way that changes the API, the developer’s program may stop working for
users who have the new version of the library; the developer may not know
about the problem until someone files an issue report. Holmes and Walker [4]
noted that if developers wish to respond proactively to changes in libraries they
depend on, they must constantly monitor a flood of information regarding changes
to the deployment environment of their program. Unfortunately, the amount of
information they must process leads to many developers giving up: rather than
proactively responding to changes in the deployment environment, they respond
reactively when an issue report is filed. The delay between the change occurring
and the issue report being filed may exacerbate the problem and lower users’
opinion of the product. In response, Holmes and Walker developed YooHoo, a
tool that filters the flood of change events regarding deployment dependencies
to those that are most likely to cause problems for a specific developer or
project.

YooHoo has two components: generic change analysis engines (GCAs) and
developer-specific analysis engines (DSAs). Each GCA is tied to a specific external
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repository and monitors changes that are made to that repository. When a developer
starts using YooHoo, it automatically generates GCAs for all of the projects the
developer depends on. These GCAs generate the flood of change events that may or
may not be of interest to the developer.

DSAs are responsible for filtering the events captured by GCAs. YooHoo
monitors the files in the developer’s system to identify the set of files that the
developer is responsible for. It then determines which external dependencies are
used by those files so that it can limit the flood of change events to events coming
from those dependencies. In addition, every event that comes from a relevant GCA
is analyzed to gauge the severity of its impact on the developer’s code. Events that
might break the developer’s code are shown, as are informational events such as
updated documentation. All other events are discarded. This filtering process means
the developer will see on the order of 1 % of the change events that occur, and most
of them will be immediately relevant to the developer’s work.

YooHoo illustrates that RITSs can be used for developer awareness and coor-
dination tasks. Recommendation systems in-the-small have two advantages in this
application area: they can generate recommendations quickly, and they are designed
to make recommendations based on the developer’s current context. They are
therefore good at producing relevant recommendations for time-sensitive tasks. In
YooHoo’s case, its heuristics allow it to categorize change events quickly and with
high accuracy. An alternative data mining approach to categorization would likely
increase accuracy but at the price of speed.

4.4 Developing Heuristics

As we mentioned at the beginning of the chapter, recommendation systems in-the-
small frequently use heuristics to compensate for having a limited set of raw data to
base recommendations on. These heuristics can be developed by:

• using human intuition about the problem;
• using data mining during the development of the recommender to identify

patterns that are built into the recommender as heuristics; or
• using machine learning to learn the heuristics during operation.

Combinations of these approaches can also be used; for instance, human intuition
could be used to generate initial heuristics that are then refined by machine learning.
Heuristics can also be combined, possibly with different weights assigned to each.

In this section, we discuss the advantages and disadvantages of these different
methods of generating heuristics. We also discuss how the recommendation systems
described in the previous section make use of these techniques.
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Propose heuristic

Manually/empirically
validate

Build prototype

Informs new
heuristics

Refine heuristic

Fig. 4.3 The process that a recommendation system designer uses to develop the heuristics that
the system will use

4.4.1 Human Intuition

When developing a RITS, the creators often use their intuition about the application
domain to develop the heuristics that are built into the recommendation system.
Figure 4.3 shows the general procedure for doing this. First, the recommendation
system developer chooses some initial heuristics. The developer encodes these
into the tool, tries it, and notes whether or not the recommendations are of
satisfactory quality. The latter step might be done through manual inspection or
empirical analysis. If the results are not satisfactory, the RITS developer can modify
the existing heuristics, possibly by weighting them differently or using different
threshold values. Alternatively, the developer can develop entirely new heuristics.

In the previous section, we saw three recommendation systems that use heuristics
based on human intuition: Suade, Strathcona, and Quick Fix Scout. We examine in
turn how the heuristics used by each were developed.

Suade’s Heuristics

Suade’s specificity and reinforcement heuristics are intuitive in the development
setting. Specificity reflects the idea that if an element of unknown relevance has
a unique relationship with an element that is known to be relevant, it is probably
relevant itself. Reinforcement reflects the idea that if most of the elements in a
group of structurally related elements are known to be relevant, then the rest of
the elements in the group are probably relevant as well.

After building Suade around these heuristics, Robillard performed an empirical
study on five programs to evaluate the heuristics. He chose a benchmark for each
program by identifying a group of elements that had to be modified to complete
a given task. The benchmarks were either generated for the study or reused from
previous work. For each benchmark, the author generated a number of subsets of the
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known relevant elements, fed them into Suade, and verified that the other elements
in the benchmark received high ratings.

Strathcona’s Heuristics

The Strathcona system includes four heuristics that Holmes et al. believed would
identify relevant source code examples. The authors began with two simple
heuristics, but, finding them inadequate, added two more. The authors evaluated
the heuristics with a small user study. They asked two developers to perform four
tasks using Strathcona. For three of the tasks, Strathcona could identify relevant
examples; the remaining task was deliberately chosen so that Strathcona could not
help the developers. The developers were mostly successful at completing the tasks,
though one developer did not finish the last task, and reported that Strathcona made
the tasks easier. They also quickly realized that one of the tasks had no relevant
examples, suggesting that Strathcona does not lead to wasted exploration time in
the event that the example repository contains nothing relevant to the current task.

Quick Fix Scout’s Heuristics

Quick Fix Scout relies on a simple heuristic: a fix that results in fewer compilation
errors is better than one that results in more compilation errors. The way this is
applied is trivial: try all fixes for a given error, count the number of remaining
errors after the fix is applied, and sort the list to put the fix that resolves the
most errors at the top. Quick Fix Scout also puts the global best fix at the top of
every quick fix dialog box. This captures the intuitive knowledge that some faults
manifest themselves as compilation errors in several program locations, so fixing
the underlying fault can resolve several compilation errors at once.

Since it may be hard to believe that such a simple heuristic could be useful, the
authors did a thorough evaluation of the tool. First, 13 users installed the plugin and
used it for approximately a year. Second, the authors did a controlled study where
20 students performed 12 compilation-error removal tasks each, using either the
regular quick fix dialog or Quick Fix Scout. The results from both studies suggest
that Quick Fix Scout is helpful: feedback from the 13 long-term users was positive,
and in the controlled study, students were able to perform compilation-error removal
tasks 10 % faster.

Advantages and Disadvantages

The main advantage of relying on human intuition is that no dataset is needed. The
only requirement is that the developer of the recommendation system should have
sufficient knowledge of the application domain to generate heuristics and evaluate
the correctness of the results. It is worth repeating that these heuristics are usually
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developed iteratively: as the results from one or more heuristics are examined, other
heuristics are often introduced to either broaden or limit the results that are already
identified. Domain knowledge is again necessary for this process.

Another advantage of these heuristics is that developers are often more willing
to trust them, because they tend to be easy to understand and, obviously, intuitive to
people who are familiar with the problem domain.

The main disadvantage of relying on human intuition is that it may not be correct.
If this is the case, the recommendations will be poorer than they would be if a data-
driven approach had been used instead. Even if the heuristics seem to work well, it
is possible that better ones exist, but the recommendation designer stopped looking
for them once a fairly good set had been identified.

4.4.2 Off-line Data Mining

At first glance, using data mining to generate heuristics may seem to contradict the
theme of the chapter. However, there is an important distinction between using data
mining off-line, while building the recommendation system, and using data mining
online, as part of the recommendation system. In the first scenario, the developer
constructing the recommendation system uses data mining on a large corpus of
software projects to identify patterns. This information is then encoded as a heuristic
in the recommendation system. The recommendation system itself does not perform
data mining and does not update the heuristics: the heuristics are static. In the second
scenario, the recommendation system itself mines a repository of some sort as part
of its recommendation generation algorithm. This is the technique used by DMRSs
and the one we wish to avoid, as it can be computationally expensive and requires
maintenance of the data repository.

Using off-line data mining to generate heuristics is a way of getting some of the
benefits of data mining without incurring the expenses of data mining each time
we want a recommendation. We saw an example of this technique in the previous
section: the tool of Høst and Østvold for debugging method names used a set of
rules that were derived by performing natural language program analysis on a large
corpus of Java programs. More precisely, the authors identified many attributes that
methods can have, such as returns type in name, contains loop, and recursive call.
They then used off-line data mining to establish statistical relationships between
method names and these attributes; for instance, methods with the name get

Type(...) nearly always have the attribute returns type in name. When a method in
the developer’s program breaks one of these rules—say, a method named getList

that returns an object of type String—the recommendation system flags it as a
naming bug. The authors did a small evaluation of their rules by running the tool
on all of the methods in their Java corpus, randomly selecting 50 that were reported
as naming bugs, and manually inspecting them. The authors found that 70 % of
the naming bugs were true naming bugs, while the other 30 % were false positives.
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Of course, this study is seriously limited, since the same corpus was used for both
training and evaluating the tool, but it suggests the technique has promise.

The main advantage of off-line data mining is that if a sufficiently large and
diverse repository is mined, the heuristics are likely to be more accurate and possibly
more generalizable than heuristics generated with the other techniques.

The main disadvantage of this technique is that it is very susceptible to biased
training data. If the repository being mined only contains software projects from,
say, a particular application domain, the learned heuristics may not be applicable to
other types of software projects and may lead to poor recommendations.

4.4.3 Machine Learning

The previous two heuristic generation techniques produce static heuristics. Since
they cannot adapt to a developer’s current context, recommendation systems that
use static heuristics tend not to generalize as well; this can be mitigated by using
machine learning to adapt the heuristics on the fly.

We saw an example of a RITS that uses machine learning in Sect. 4.3. YooHoo
contains developer-specific analysis engines that filter the flow of incoming change
events to those that are likely to impact a particular developer. This filtering relies on
knowing which source files the developer owns, and since this changes over time,
the developer-specific analysis engines (DSAs) must update themselves to match.

The authors evaluated the generated DSAs with a retrospective study that
measured how well YooHoo compressed the flow of change events and whether
it erroneously filtered important events. They found that YooHoo filtered out over
99 % of incoming change events, and on average 93 % of the impactful events
remained after filtering; that is, YooHoo rarely erroneously filtered out impactful
events.

The advantage of machine learning is that it may improve the quality of
the recommendations, since the heuristics can evolve with the project. This also
avoids one of the issues with using human intuition, where the human finds a
“good enough” set of heuristics and stops trying to improve them. In addition,
the recommendations will be pertinent to a greater variety of projects, since the
heuristics were not developed with a particular (possibly biased) training set, and
the heuristics can change to match the characteristics of a new project.

The main disadvantage of machine learning is that it can get bogged down in
excess complexity in the data, identifying spurious relationships between variables.
When it is fully automated (which is common), it cannot be combined with human
analysis; when it is not fully automated, a developer has to be trained to interact
with it and has to be willing to spend the time to do so. Machine learning also
adds considerable complexity to the recommendation system’s implementation,
which may be undesirable for the sake of maintainability, runtime footprint, and
error-proneness.
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4.5 Limitations of Recommendation Systems in-the-Small

Given that recommendation systems in-the-small do not use data mining as they
generate their recommendations, they cannot be used in application domains
where it is necessary to identify patterns in large datasets. Consider code reuse:
recommendation systems for this domain help developers reuse existing code
components by locating potentially useful ones in a large component repository.
The recommender must mine the component repository to obtain the information
it needs to recommend components, so RITSs are not suitable for this domain.
That said, there are still many areas where recommendation systems in-the-small
are applicable and useful, as we saw in Sect. 4.3.

RITSs that do not use machine learning may not generalize well due to their
reliance on static heuristics. If the training set does not include a variety of software
systems, the RITS may produce poor recommendations when a developer tries to
use it on a project that was not represented in the training set. Even if a developer’s
project is initially similar to one in the training set, if the project changes enough, the
recommendations could degrade over time. Both of these issues can be addressed
by updating the heuristics, either by incorporating machine learning or by manually
updating them in each new version of the recommender.

Finally, RITSs cannot use information about non-localized trends to guide
their recommendations. Since the recommendations are based on the developer’s
immediate context, they may not be as good as they could be if the recommender
had access to information about the rest of the developer’s system. Unfortunately,
this is part of the fundamental trade-off between recommendation systems in-the-
small and data mining recommendation systems.

4.6 Conclusion

Many recommendation systems use data mining in their recommendation gen-
eration algorithms, but this can be expensive and impractical. Recommendation
systems in-the-small provide a lightweight alternative and can be used in many of
the same application areas. This chapter described five recommendation systems
in-the-small—Suade, Strathcona, Quick Fix Scout, the Java method debugger, and
YooHoo—that show the diversity that RITSs can attain. However, these tools barely
scratch the surface of what is possible with RITSs. Other works of possible interest
include:

• SRRS [12], which helps the user choose an appropriate way of specifying the
security requirements for their project;

• DPR [9], which recommends appropriate design patterns to help developers
preserve their system’s architectural quality; and

• The work by Bruch et al. [2], which compares data mining and non-data mining
approaches to code completion recommendations.
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RITSs often use heuristics to compensate for the smaller amount of data available
to them, and we looked at three ways these heuristics can be generated: using human
intuition, using off-line data mining, and using machine learning. We discussed
some of the advantages and disadvantages of these different heuristic generation
techniques. Readers who want to learn more about data mining may want to consult
a textbook such as Tan et al. [13]; readers who want to use machine learning may
be interested in Alpaydin [1].

Finally, we explored some limitations of recommendation systems in-the-small
and some situations where they cannot be used. While RITSs are in some sense
more limited than data mining recommendation systems, they are often easier to
develop; they also tend to be easier to use and more responsive since there is no data
repository to maintain. For these reasons, recommendation systems in-the-small will
continue to hold a prominent position in the field of recommendation systems in
software engineering. We encourage the reader to explore this interesting area.
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Chapter 5
Source Code-Based Recommendation Systems

Kim Mens and Angela Lozano

Abstract Although today’s software systems are composed of a diversity of
software artifacts, source code remains the most up-to-date artifact and therefore
the most reliable data source. It provides a rich and structured source of information
upon which recommendation systems can rely to provide useful recommendations
to software developers. Source code-based recommendation systems provide sup-
port for tasks such as how to use a given API or framework, provide hints on
things missing from the code, suggest how to reuse or correct an existing code,
or help novices learn a new project, programming paradigm, language, or style.
This chapter highlights relevant decisions involved in developing source code-
based recommendation systems. An in-depth presentation of a particular system
we developed serves as a concrete illustration of some of the issues that can be
encountered and of the development choices that need to be made when building
such a system.

5.1 Introduction

In general, recommendation systems aid people to find relevant information and
to make decisions when performing particular tasks. Recommendation systems in
software engineering (RSSEs) [31] in particular are software tools that can assist
developers in a wide range of activities, from reusing code to writing effective
issue reports. This chapter’s focus is on source code based recommendation system
(SCoReS), that is, recommendation systems that produce their recommendations
essentially by analyzing the source code of a software system. Since programming
lies at the heart of software development, it is no surprise that recommendation
systems based on source code analysis are an important class of RSSEs.
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Many current SCoReS are aimed at supporting the correct usage of application
programming interfaces (APIs) [e.g., 9, 22, 39], libraries, or frameworks [e.g., 4].
They typically rely on a corpus of examples of known API usage, obtained by
analyzing several applications that use a particular API. The recommendation
tools that use this corpus often consist of a front-end embedded in the integrated
development environment (IDE), and a back-end that stores the corpus. The front-
end is in charge of displaying results and getting the right information from the
IDE or development context in order to formulate appropriate queries. The back-
end is in charge of producing results that match these queries and of updating
the corpus. When a developer edits a program, the recommendation system can
suggest how the API should be used, based on similar, previous uses of the API.
Such recommendation systems can be considered as “smart” code completion tools.
The match-making process typically uses information similar to that used by code
completion tools, such as the type of the object expected to be returned and the type
of the object from which the developer expects to access the required functionality.

In addition to this class of SCoReS, many other kinds of SCoReS can be
distinguished, not only depending on the kind of recommendations they extract
from source code or on what technique they use to do so, but also on the kind of
design choices that went into building them. Although a wide variety of source code
analysis techniques exists, and even though the information needs of developers
when evolving their code have been identified [33], it is not always obvious how
to leverage a particular technique into a successful recommendation tool. Even
when the most appropriate technique is chosen that best suits the recommendation
needs for a particular development task, there is no guarantee that it will lead
to a successful recommendation tool. We do not claim to have discovered the
philosopher’s stone that will lead to successful recommendation tools that are
adopted by a broad user base. We do argue that, when building a recommendation
system, one needs to be aware of, and think carefully about, all relevant development
choices and criteria, in order to be able to make educated decisions that may lead
to better systems. All too often, development choices that may seem unimportant at
first, when not thought about carefully, may in the end hinder the potential impact
of a SCoReS.

The goal of this chapter is to present novices to the domain of source code-
based recommendation systems a quick overview of some existing approaches, to
give them a feeling of what the issues and difficulties are in building such systems,
and to suggest a more systematic process to develop SCoReS. This process was
distilled from a non-exhaustive comparison and classification of currently existing
approaches, as well as from our own experience with building tools to support a
variety of software development and maintenance tasks.1

1These tools range from source code querying tools like SOUL [26], over source code-based val-
idation tools like IntensiVE [25] and eContracts [19], to source code mining and recommendation
tools like Heal [5], Mendel [18], and MEnToR [20].
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To achieve this goal, the chapter is structured as follows. After presenting a few
concrete examples of SCoReS in Sect. 5.2, Sect. 5.3 lists the main decisions that
need to be taken when developing such systems, suggests an order in which these
development choices could be made, and illustrates this with different choices that
have actually been made (whether explicitly or implicitly) by currently existing
SCoReS—those introduced in Sect. 5.2 in particular. Being aware of the possible
choices to make, as well as of the potential impact of those choices, is of key
importance to novices in the area, so that they can make the right choices when
building their own SCoReS. To illustrate this, Sect. 5.4 zooms in on a set of actual
recommendation systems we built, highlighting the different design choices made
or rejected throughout their development and evolution. We conclude the chapter
and summarize its highlights in Sect. 5.5.

5.2 Selection of Source Code-Based Recommendation
Systems

Before proposing our design process for SCoReS in the next section, we briefly
present a selection of five recommendation systems that we use to illustrate the
importance of certain design decisions. The selected systems are RASCAL, FrUiT,
Strathcona, Hipikat, and CodeBroker. We selected these systems because they are
complementary in terms of the covered design approaches.

5.2.1 RASCAL

RASCAL [23] is a recommendation system that aims to predict the next method
that a developer could use, by analyzing classes similar to the one currently
being developed. RASCAL relies on the traditional recommendation technique of
collaborative filtering, which is based on the assumption that users can be clustered
into groups according to their preferences for items. RASCAL’s “users” are classes
and the items to be recommended are methods to be called. The similarity between
the current class and other classes is essentially based on the methods they call.

RASCAL is divided in four parts, in charge of different stages of the recommen-
dation process. The first is the active user, which identifies the class that is currently
being developed. Second is the usage history collector, which automatically mines
a class–method usage matrix and a class–method order list (see Fig. 5.1) for all
classes in a set of APIs. Each cell in the matrix represents the number of times a
particular method is called by a class. Third is the code repository, which stores
the data mined by the history collector. And fourth is the recommender agent,
which recommends the next method for the user to call in the implementation
of the method and class where the cursor is currently located. The recommender
agent starts by locating classes similar to the one that is currently selected. The
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Fig. 5.1 RASCAL database
[23]. Reproduced with
permission

Fig. 5.2 RASCAL
recommendation ordering
[23]. Reproduced with
permission

similarity between two classes is calculated by comparing the methods they call. The
frequency with which a method is used is taken into account to identify significant
similarities. Commonly used methods like toString() get lower weight than other
methods when comparing two classes. As a concrete example, consider Fig. 5.2
illustrating a situation where, while implementing method1 in class A, a developer
adds a call to method setText. To suggest other method calls to be added after this
one, RASCAL looks at similar classes that contain a method calling setText, and
then recommends the other method calls made by that method, in the same order as
the appear in that method after its call to setText.

5.2.2 FrUiT

FrUiT [4] is an Eclipse plugin to support the usage of frameworks. FrUiT shows
source code relations of the framework that tend to occur in contexts similar to the
file that a developer is currently editing. Figure 5.3 shows a screenshot of FrUiT.
The source code editor (1) determines the developer’s context, in this case the file
Demo.java. FrUiT’s implementation hints for this file are shown (2) on a peripheral
view in the IDE, and the rationale (3) for each implementation hint (e.g., “instantiate
Wizard”) is also shown. For each implementation hint, the developer can also read
the Javadoc of the suggested class or method (4).

FrUiT’s recommendations are calculated in three phases. First, FrUiT extracts
structural relations from a set of applications using a given framework or API. These
structural relations include extends (class A extends class B), implements (class A
implements an interface B), overrides (class A overrides an inherited method m),
calls (any of the methods of class A call a method m), and instantiates (a constructor
of class B is invoked from the implementation of class A).
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Fig. 5.3 A screenshot of FrUiT at work [4]. Reproduced with permission

Second, FrUiT uses association rule mining to identify structural relations that
are common whenever the framework or API is used. Association rules are of the
form:

antecedent
confidence������! consequent ,

which can be interpreted as if–then rules. For instance, the rule

call W m 80%��! instantiate W B
would mean that whenever an application using the framework calls the method
m, it also tends to (in 80 % of the cases) call a constructor of class B. Notice that
FrUiT also shows each of the cases in which the association rule holds or not (see
bottom-right side of the IDE in Fig. 5.3). Given that association rule mining tends
to produce a combinatorial explosion of results, it is necessary to filter the results to
ensure that the tool produces only relevant information. FrUiT’s filters include:

• Minimum support: there should be at least s cases for which the antecedent of the
rule is true.

• Minimum confidence: the cases for which both the antecedent and the consequent
of the rule are true over the cases for which the antecedent is true should be at
least c%.

• Misleading rules: whenever there are rules with the same consequent that have

overlapping antecedents (e.g., y
c1%��! z and y ^ x

c2%��! z), the rule with the least

prerequisites in the antecedent is preferred (i.e., y
c1%��! z), because the additional

prerequisite for the antecedent (i.e., x) decreases the likelihood that z holds.
• Overfitting rules: even if in the case of the previous filter c2 would be marginally

greater than c1, the rule with the more detailed antecedent would still be
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rejected to keep the rule simpler, and because the increase in confidence is not
significantly higher.

• Specific rules: imagine two rules with the same consequent and same confidence,
whose antecedents are related by a third rule with 100 % confidence. For instance,

x
c%�! z, y

c%�! z, and y
100%���! x). Then the second rule can be discarded

(y
c%�! z) because it is already subsumed by the first one (x

c%�! z).

In the third and final phase, for the file currently in focus of the Eclipse editor,
FrUiT recommends all rules that mention in their antecedent or consequent any of
the source code entities of the framework mentioned in that file.

5.2.3 Strathcona

Strathcona [13] is also an Eclipse plugin that recommends examples (see Fig. 5.4d)
on how to complete a method that uses a third-party library. The user is supposed to
highlight a source code fragment that uses the third-party library to ask Strathcona
for examples that use the same functionality of the library (see Fig. 5.4a). The
examples are taken from other applications using the same third-party library.

Strathcona works by extracting the structural context of source code entities.
This structural context includes the method’s signature, the declared type and parent
type, the methods called, the names of fields accessed, and the types referred to by
each method. The extracted structural context can be used in two ways: (1) as an
automatic query that describes the source code fragment for which the developer
requests support, and (2) to build a database containing the structural contexts of
classes using the libraries that the tool supports. Relevant examples are located
by identifying entities in Strathcona’s database with a structural context similar
to the one of the fragment being analyzed (see Fig. 5.4b,c). Similarity is based on
heuristics that take into account entities extending the same types, calling the same
methods, using the same types, and using the same fields. Entities in the result set
that match more heuristics are ranked higher than those that match fewer ones.

5.2.4 Hipikat

Hipikat [7] helps newcomers to a software project to find relevant information for a
maintenance task at hand. The idea behind Hipikat is to collect and retrieve relevant
parts of the project’s history based on its source code, email discussions, bug reports,
change history, and documentation. Figure 5.5 shows a screenshot of Hipikat.

The main window in the IDE shows a bug report that the developer wants to
fix (see Fig. 5.5a). Once the developer chooses “Query Hipikat” from the context
menu, the tool will return a list of related artifacts. The artifacts related to the bug
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Fig. 5.4 Strathcona screenshots [13]. Reproduced with permission. (a) Querying Strathcona.
(b) Graphical view of the recommended example, highlighting similarity with the queried code.
(c) Explanation for the recommendation, as a list of structural facts matching the queried code.
(d) Source code view of the recommended example

are shown in a separate view (see Fig. 5.5b). For each artifact found, Hipikat shows
its name, type (webpage, news article, CVS revision, or Bugzilla item), the rationale
for recommending it, and an estimate of its relevance to the queried artifact. Any
of the artifacts found can be opened in the main window of the IDE to continue
querying Hipikat, so the user can keep looking for solutions for problems similar to
the one described in the bug report.
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Fig. 5.5 A screenshot of Hipikat [7]. Reproduced with permission

Hipikat is composed of two parts. The first part is an Eclipse plugin that sends the
query (by artifact of interest or a set of keywords) and presents the results (related
artifacts). The second part is the back-end that builds a relationship graph of diverse
software artifacts and calculates the artifacts relevant to the query. In contrast to the
previously described SCoReS, Hipikat’s recommendations are based on the links
established between different artifacts and their similarity. The links are inferred by
custom-made heuristics. For instance, bug report IDs are matched to change logs by
using regular expressions on their associated message, and change time-stamps on
source code files are matched to the closing time of bug reports.

5.2.5 CodeBroker

CodeBroker [38] recommends methods to call based on the comments and signature
of the method where the developer’s cursor is currently located. The goal of the
system is to support the development of a new method by finding methods that
already (partially) implement the functionality that the developer aims to implement.

CodeBroker is also divided in a front-end and a back-end. The front-end monitors
the cursor, queries the back-end with relevant information from the current context,
and shows the results. The back-end is divided in two parts: (1) a discourse
model that stores and updates the comments and signatures of methods from a
set of libraries, APIs, and frameworks to reuse, and (2) a user model to remove
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Fig. 5.6 Screenshots of CodeBroker [38]. Adapted with permission. (a) CodeBroker’s recom-
mended methods (first recommended method is selected). (b) Left-clicking on the selected
recommendation shows the Javadoc of the method. (c) Right-clicking on the selected recommenda-
tion allows to remove it from the recommendation list or to refine the query. (d) Query refinement

methods, classes, or packages from the recommendation list, while remembering if
the removal should be done for a session (irrelevant for the task) or for all sessions
(irrelevant for the user, i.e., the developer is aware of the method and does not need
to be reminded of it). For instance, Fig. 5.6c illustrates how it suffices to right click
on a recommendation to be able to eliminate it from the recommendation list.
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CodeBroker is a proactive recommendation tool integrated with the source code
editor (emacs). That is, the tool proactively identifies the need for recommendations
by monitoring method declarations and their description as soon as the developer
starts writing them. This means that every time the cursor changes its position,
it automatically queries the back-end repository. The query describes the method
currently being developed in terms of the words used in its comments, of the words
in its signature, and of the types used in its signature. This query aims at finding
methods with similar comments and signatures. The technique used is the same as
that used by basic text search engines—namely, latent semantic analysis (LSA)—
which represents each method as a Boolean vector that indicates which words are
mentioned by the method’s signature or comments, and a vector of weights that
indicates which words are significant, to decide the similarity between two methods
of an application. The text search results are then filtered depending on the similarity
between the types used in the method in focus and those that matched. As soon
as there is a response for the query, matching methods are presented, ordered by
relevance, in a peripheral view of the source code editor (see Fig. 5.6a). Finally,
Fig. 5.6d shows how CodeBroker allows the developer to guide the back-end in
finding relevant recommendations by adding the names of methods, classes, or
packages to the Filtered Components so that they get excluded from the results,
or to the Interested Components so that the search is limited to these entities.

5.3 Development Decisions When Building a SCoReS

Throughout the development of a source code-based recommendation system, many
important decisions need to be made. These decisions can be classified along two
main axes. The first axis is the phase of the development cycle when the decision
needs to be made: is it a decision that relates to the system’s requirements, to
its design, to its actual implementation, or rather to its eventual validation? (Said
et al. [32], Tosun Mısırlı et al. [34], Walker and Holmes [36], and Avazpour et al.
[2] provide more details about validation decisions in Chaps. 11, 12, 13, and 10,
respectively.) The other axis is whether these decisions apply to the recommendation
approach or are rather about how the system interacts with the user. (Murphy-Hill
and Murphy [29] provide more detail about user interaction in Chap. 9.) Table 5.1
summarizes these axes and the main classes of decisions that can be found along
these axes.

5.3.1 Process

Assuming that we follow a traditional development cycle starting from the require-
ments down, the numbers in Table 5.1 suggest a possible process of how and when
to make these decisions:
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Table 5.1 Kinds of development decisions to be taken when building a SCoReS

Requirements Design Implementation Validation

Approach 1. Intent 3. Corpus 5. Method 7. Support
User interaction 2. HCI 4. General I/O 6. Detailed I/O 8. Interaction

1. Start by thinking about the system’s Intent (see Sect. 5.3.2), which are all the
decisions related to the purpose of the recommendation approach.

2. Then decide upon the Human Computer Interaction (see Sect. 5.3.3), that is,
how the end-user (typically, a developer) is expected to interact with the SCoReS.

3. Once the functional and user interaction requirements have been decided upon,
choose what Corpus (see Sect. 5.3.4) of data sources the system will use to
provide its recommendations.

4. General Input/Output (see Sect. 5.3.5) decisions then refine the Human Com-
puter Interaction decisions taken previously.

5. Now decide upon the details of the recommendation Method (see Sect. 5.3.6),
that is, all details related to how the recommendation process is implemented.

6. Since the decisions of the previous step may shed more light on the Detailed
Input/Output (see Sect. 5.3.7), next we can decide what precise information the
approach requires as input and what and how it produces its output.

7. After having implemented the system, we need to choose how to validate it. On
the approach axis, the main question is how well the system provides Support
(see Sect. 5.3.8) for the tasks it aims to provide recommendations for.

8. On the user interaction axis, regarding the validation, some decisions need to be
made on how to assess the Interaction (see Sect. 5.3.9) of different users with
the SCoReS.

In the next subsections, we zoom in on each of these classes of decisions, one by
one, providing examples taken from a selection of SCoReS approaches that we
analyzed,2 and the selected approaches presented in Sect. 5.2 in particular.

5.3.2 Intent

The intent decisions define the purpose of the system: who is the intended user,
what tasks need to be supported by the system, what kind of cognitive support can
it provide, what kind of information does it produce to support that task?

2Many approaches exist that extract relevant information for developers from source code. For the
purpose of this chapter, we analyzed a non-exhaustive selection of approaches that call themselves
or that have been cited by others as “recommendation systems.” We further filtered this selection
to those systems that rely explicitly on the source code to produce their recommendations, and
privileged approaches published in well-known software engineering venues.
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Intended User

Regarding the intended audience, first a decision should be made on the role of
the expected users of the system. Although most SCoReS, such as those shown
in Sect. 5.2, are targeted at developers, some others (whose supported task is not
directly linked to modification requests) also consider other roles [1, 16]. German
et al. [11] distinguish roles such as maintainers, reverse engineers, reengineers,
managers, testers, documenters, or researchers. A second decision is related to the
level of experience of the intended users. Whereas some recommendation systems
make no assumptions about their users’ levels of experience, others are targeted
specifically at novices or experts in either the source code or the programming
language being studied. For instance, Hipikat helps newcomers to a project, whereas
CodeBroker can be personalized depending on the experience level of its users.

Supported Task

This decision is about what task the system aims to support. As already mentioned
in Sect. 5.1, many SCoReS aim at supporting the correct usage of APIs, libraries,
or frameworks. Others support mappings for API evolution [8] or for language
migration [40]. Yet others recommend code corrections (source code entities that
are associated to bugs) [5], code to be reused (methods to be reused that contain a
functionality that needs to be implemented) like CodeBroker, code changes (source
code entities impacted by the change of another source code entity) [41] or code
suggestions (suggested changes to code entities to complete or standardize their
implementation) [18, 20, 21]. Some SCoReS, like Hipikat, can support novices in
learning a new project. Others provide relevant information that can help developers
understand how certain concerns are implemented [12,30] or how certain bugs have
been solved [1].

Cognitive Support

According to German et al. [11], another important decision is how recommendation
systems support human cognition to achieve certain tasks. In other words, which
questions about the task can the system help answering? Five categories of questions
can be distinguished: who, why, when, what, and how.

Many systems aim at finding artifacts or source code entities relevant to
developers to perform their task (i.e., they provide an answer to the question of
what information is needed to complete the task) [7, 23].

The amount of information a system provides to explain its recommendations
tends to depend on the context in which it is applied. Systems that offer API support
and that act as a kind of code completion tool integrated with the IDE do not
usually (need to) provide detailed information that could help a user evaluate the
appropriateness of their recommendation. API support tools that are not embedded
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as code completion tools, on the other hand, do tend to provide diverse views that
explain the rationale for each recommendation they propose. Nevertheless, the level
of detail offered does not depend only on how the system is integrated with the IDE.
While some SCoReS, like Hipikat and CodeBroker, provide information to explain
why an entity is part of their recommendation set, others require the developer to
figure out the rationale of the recommendation [12, 17, 30].

Another popular cognitive support provided by SCoReS, as exemplified by
FrUiT and Strathcona, is information for developers on how to complete their task.
The level of detail offered depends on the kind of support provided by the system.
Systems with specific goals such as how to replace deprecated methods [8] or how
to obtain an instance of a type from another instance of another type [9, 22] need
to provide less background information on their recommendations than systems
concerned with broader goals (e.g., how to complete a method [18, 20]), systems
that require user input (e.g., how to map statements in a method [6]), or how to use
an API method [4, 13].

Only a few systems provide support for answering questions about the reasons
behind given implementation choices (why something is implemented in a certain
way); the ones that are closest to supporting this proposition are those that look
for information related to an artifact/entity [1, 12, 30] but the relation among those
entities must still be discovered by the developer.

Similarly, few SCoReS seem to answer temporal questions (when), which is
probably due to the fact that they often do not rely on change information. Such
temporal information could however be useful for answering rationale questions,
since it can uncover the trace behind a change.

Finally, SCoReS rarely permit to answer authorship (who) questions (a notable
exception is DebugAdvisor [1]), due to the fact that the source code alone often does
not have information on its author, unless complemented by other sources that do
have this.

Proposed Information

This decision pertains to what kind of information a recommendation system
proposes. The information proposed affects the usability of a recommendation.

Some recommendation systems propose concrete actions [3, 6, 9, 22, 39], that is,
they not only advise what to do, but also how to do it. For most recommenders
proposing actions, the only thing that remains to be done by users (typically
developers) is to select the change that they judge adequate for the current context
or task, and the system will perform it automatically (e.g., inserting a code snippet
after the last statement added to the source code entity being implemented). Most
systems providing API support or code completion propose actions as output.

Another common type of output, for example, in FrUiT, RASCAL, and Code-
Broker, is source code entities—that is, what to change or use but not how to
do it. Depending on the task at hand and the type of recommendation system, a
further interpretation of the proposed results may then be required. For example,
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the recommendation system may propose to modify a particular source code entity
in a very specific way, but the system’s integration with the IDE may not be
sophisticated enough to automate this action, thus requiring the user to perform
this action manually.

Examples can help a user understand how a similar problem was solved in similar
situations [13]. It is the user’s job of deciding whether and which part of the example
is relevant for the task at hand, and how to adapt the example to the current situation.

Finally, SCoReS can suggest related software artifacts (i.e., any by-product of the
software development process that is not a source code entity) to help a developer in
better understanding the implications of the task at hand [1, 7]. The usefulness and
efficacy of these recommendations depend on the relevance of the information and
links that the developer can abstract from the information the system proposes.

5.3.3 Human–Computer Interaction

After having focused on decisions related to the system’s intent, the human–
computer interaction must be considered. These decisions permit us to establish
the expected interaction between a user and a SCoReS. They comprise the type of
system, the type of recommendations generated, and the input expected of the user.

Type of System

A recommendation system can be an IDE plugin, a standalone application, or
some other type such as a command line tool or an internal or external domain-
specific language (DSL) to be used by the user of the system. Given that most
of the SCoReS we analyzed are targeted at developers, they tend to be integrated
with the development environment, as is the case with FrUiT, Hipikat, Strathcona,
and CodeBroker. This choice allows for an easier detection of the user’s context
or activity, and sometimes easier access to the syntactic entities and relations
being used in that context. Another alternative that is sometimes chosen for
recommendation systems is to make them standalone applications, like RASCAL.
Both standalone SCoReS and those integrated with the IDE tend to have a graphical
interface. Programmatic SCoReS are seldom an implementation choice probably to
reduce their intrusiveness.

Type of Recommender

This decision characterizes what type of recommender a SCoReS is: a “finder,” an
“advisor,” or a “validator.”

Some recommendation systems, such as Hipikat and Strathcona, are dedicated
search engines that find relevant information for a particular task at hand. For
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example, Strathcona finds examples on how to use a given API, while Hipikat
finds information related to a source code artifact, for instance, a change request.
Other systems, such as FrUiT, RASCAL, and CodeBroker, focus on advising certain
courses of action to the user. RASCAL, for example, recommends what method calls
may need to be added. The advice produced may be sufficiently clear to end users
only if it is part of their workflow, as is the case with code completion tools providing
code suggestion to developers, or if the user knows exactly how to interpret the
results produced by the recommendation system.

Yet other systems focus more on verifying or validating certain properties of the
source code, such as adherence to certain conventions or design regularities [19,25].

An interesting observation is that it sometimes happens that developers misuse
a SCoReS. For instance, if the methods recommended by some SCoReS often
have words similar to those in the identifier or comments of the method currently
being implemented, developers can be tempted into abusing the system as a kind of
search tool, by changing the signature or comments of their methods to resemble
the methods they anticipate to be within the APIs used. Such a case was reported
in [38]. This change in the user’s expected behavior (using the system as a finder
rather than as a validator) could probably be explained by the fact that the developer
found it frustrating to use the SCoReS due to repeated unsuccessful use because
many of the anticipated methods did not exist in the APIs used. When building a
SCoReS, being aware of the possibility of such abuses is important.

User Involvement

Another important choice that needs to be made is what kind of user involvement
the SCoReS requires. For example, does it require manual input or does it require
user involvement for filtering the output?

Usually, the input required for a SCoReS can be extracted automatically from the
programming context. For instance, the method being implemented, the methods it
has called so far, the types it has used so far, the order of the methods called, the last
statement or identifier created, etc. Given that the majority of SCoReS only rely on
the analysis of source-code entities related to the one being edited or selected, there
is no need of manual input. However, if a SCoReS being developed requires data
that cannot be extracted from the programming context, it is necessary to decide in
which way the user will provide the information required. For instance, by using
a query made by the user to select a set of seed entities [12] or by asking the user
explicitly to provide the source and target for a mapping [6].

Another important choice to make is whether or not the user can or should
filter out recommendations. This filtering can be done iteratively, like in FrUiT or
CodeBroker, and/or from the group of final results, like in Strathcona, RASCAL,
and CodeBroker. Interestingly, filtering of results can also be used to exclude the
user’s explicit input. For instance, CodeBroker eliminates results that the user
knows by looking at their local history. Another interesting alternative to consider
is allowing result filtering per user session or per module [38].
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5.3.4 Corpus

Deciding on the corpus of a SCoReS amounts to deciding what data sources the
system needs to provide its recommendations. The main source of information used
by SCoReS is program code, yet it is sometimes complemented with additional
sources of information such as change management or defect tracking repositories,
informal communications, local history, etc. When combining several sources of
data, it is also important to explicitly decide how these sources are to be correlated.

Program Code

A first important decision to make regarding the corpus is whether or not the system
will calculate its recommendations based on the application on which a developer is
currently working, as in Hipikat, or on an application that they are currently using,
as in the other SCoReS we illustrated. The former set of systems build their corpus
from the code of a single application (i.e., the one that is being built) while the latter
build their corpus from the code of multiple applications (i.e., those that also use the
application that is being used by the application being built).

This choice has repercussions on the techniques and methods that can be used
to calculate recommendations, on storage requirements, and on their usefulness.
SCoReS with a corpus based on multiple applications can use generic data analysis
techniques, but require storage to hold the data collected previously and their rec-
ommendations are often restricted to the analysis of a specific library or framework.
Therefore, their usefulness depends on the match between the APIs used by the user
of the SCoReS and those available on the server. In contrast, SCoReS that analyze
a single application do not need separate storage nor prefetched data, nevertheless
they usually require specialized or heuristic-based data analysis techniques. These
SCoReS are also well suited for closed source applications.

Complementary Information

In addition to source code or a source code repository, a recommendation system
may also distill useful information from program execution traces [1], from version
control systems [1, 7, 8, 41], from issue management systems [1, 7], from informal
communication [7] transcripts between developers (taken from e-mail discussions,
mailing lists, instant messages, discussion forums, etc.), or from the user’s history by
tracking and analyzing the user’s navigation and edition behavior. Mylar [15] (later
renamed Mylyn) provides an example of the latter by providing program navigation
support that gives artifacts of more recent interest a higher relevance.
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Correlated Information

All SCoReS that use data not originating from the source code correlate it to
source code. Indeed, there is little added value of having several data sources if
the system does not attempt to combine the sources into something that is more
than the sum of its independent facts. A relevant decision to take is thus how to mix
the information coming from program code with the information extracted from
complementary sources. For example, author information and time-stamps of files
in a CVS repository can be correlated to the source code contained in those files to
infer what source code entities may have changed together [41], or the identifier of a
bug report can be linked to the messages in CVS commits to locate the source code
entities that were modified when fixing a bug [7].

5.3.5 General Input/Output

The general input/output decisions listed below define the interaction between a
user and the recommendation system, and refine the human–computer interaction
decisions discussed in Sect. 5.3.3.

Input Mechanism

A first decision regards whether or not the SCoReS infers its input from the
currently active source code entity or artifact whenever the recommendation system
is triggered. This decision depends on whether or not the information available from
the source code development context is needed to calculate recommendations for
the task to support. While most SCoReS infer their input implicitly from the current
context or activity of the user, like in FrUiT, Strathcona, and RASCAL, others rely
either partially or completely on the user’s input to identify for which task or entity
the recommendation is requested, like CodeBroker and Hipikat.

Nature of Input

The nature of the input directly affects the user’s perception of how easy it is
to use the system. The majority of SCoReS require as input (a fragment of) a
source code to provide concrete recommendations regarding that source code, as
in FrUiT or RASCAL. Other systems implicitly or explicitly take the users’ context
and activity into account in order to support them in that activity, like Strathcona
or CodeBroker. Extracting the programming context is usually limited however to
identifying the source code entity in focus or currently being used: only a few of the
recommendation systems go beyond that. APIExplorer, for instance, finds source
and target types in a code completion operation [9]. Finally, some systems take input
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under the form of a natural language queries [12], or other non-code artifacts, like
in Hipikat.

Response Triggers

When building a SCoReS, one also needs to decide when the system should be
triggered to calculate its recommendations. Recommendations can be calculated
either upon explicit request by the user (known as reactive recommendations),
as in FrUiT, Hipikat, Strathcona, and RASCAL, or proactively when a certain
contextual situation occurs, such as saving a file. But even for those SCoReS that
discover their input implicitly from the development environment, the request for
calculating a recommendation typically remains explicit, except for a few systems
like CodeBroker that continuously update their results. This design decision is
related to whether the system’s responses are considered as intrusive or not, in other
words whether they interfere directly with how developers normally perform their
tasks. Most SCoReS try to be not too intrusive by triggering responses only upon
explicit request by the developer and by presenting the recommendations and their
rationale in peripheral views and not in the main programming view.

Nature of Output

The nature of the output, too, may affect significantly the usability perception of
a SCoReS. For example, for a source code fragment given as input, Strathcona
provides similar source code examples to a developer. Each such example consists
of three parts: a graphical UML-like overview illustrating the structural similarity of
the example to the queried code fragment, a textual description of why the example
was selected, and source code with structural details highlighted that are similar to
the queried fragment.

There is no typical type of output for SCoReS. While some of them are restricted
to deliver the information requested in some primitive textual description [4,13,22],
others aim at integrating the recommendation into the IDE so it can be used as
seamlessly as possible. This seamless information includes navigation and browsing
aids such as: text links [18, 20]; clickable links as in FrUiT, Hipikat, Strathcona, and
CodeBroker; annotations or highlights of relevant parts of the source code as in
Strathcona and CodeBroker; or graphical notations as in Strathcona, for the results.

There are some missing opportunities at graphical outputs given that existing
SCoReS tend to be limited to UML graphs, but the intermediate data representations
used by the SCoReS (e.g., graphs, trees, vectors) so far have been neglected as a
way to deliver the recommendations. We believe that, in some cases, presenting
the recommendations in such a format, as opposed to presenting a mere list of
recommendations, may provide a more intuitive way for the end-user to understand
the results.



www.manaraa.com

5 Source Code-Based Recommendation Systems 111

Type of Output

The usefulness of SCoReS also depends on the appropriateness of the output
produced to the task to support. Examples of these outputs include existing software
artifacts [1, 7] or source code entities relevant to the user’s current task, missing
source code entities or fragments [4, 18, 20], or suggestions for mapping entities
(e.g., statements [6] or methods [8]). Existing relevant entities usually indicate
other entities that were typically used or changed whenever the source code entity
or entities given as input are used, for instance, methods to reuse [38], methods
to change [41], the next method to call [3, 23], or a set of methods to call
(as a list [12, 17, 30], as a sequence [37], using an example [13], or as a code
snippet [9, 22]). Mappings indicate how to use or replace the components of one
entity with the components of the other entity. And implementation suggestions
indicate syntactic or structural relations that may have been forgotten in an entity’s
implementation (such as implementing an interface, calling a method, using a type,
etc.).

5.3.6 Method

We now discuss all design choices specific to the software recommendation process.

Data Selection

Once the data to be used as input by a SCoReS is chosen (e.g., all applications that
use a certain API), the developer of the SCoReS must decide on the level of detail in
which the data will be collected. This decision affects which analyses are possible
and which information will be available for the user of the SCoReS. As such, the
data selected as relevant for the recommendations can provide a differentiating
factor among similar SCoReS. It is therefore important to describe up front the
rationale for the data to be collected, and in particular how it can be used to provide
a useful recommendation, so that the appropriate level of granularity can be chosen.
While a too coarse granularity may negatively affect the support the SCoReS aims
to provide, there is no use in choosing too fine a granularity either.

Not surprisingly, when analyzing object-oriented source code, the preferred level
of detail of most SCoReS seems to be at the level of methods [4, 13, 23, 38]
and relations between methods (like call statements [4, 13, 23], overriding infor-
mation [3], extends [3, 9, 13, 18, 20, 22], and implements [3, 22]). Nevertheless,
type information like the return type of a method [9, 13, 22] or the type of its
parameters [9,13,22] can be very useful to connect different source code entities as
well. Tokens within the names of source code entities are another significant piece of
information to consider [6,12,18,20,37–40] as a way to analyze the issues of diverse
vocabulary to describe the same concept or feature, and to match the concrete
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concepts that developers use when dealing with modification requests versus the
high-level concepts used when implementing reusable source-code entities. Other
levels of source code information used include comments [38], files [1, 7, 41],
types [9,17,22], fields [13,17,30,40], literals [39], signatures [38], contains/instan-
tiates statements [3, 4, 6, 9, 13, 17, 18, 20, 22], access information [13, 17, 22, 30, 39],
order of statements [23, 37], and changes to source code [1, 7, 8, 41].

Type of Analysis

The simplest kind of analyses are textual approaches that process raw source code
directly. Lexical approaches or token-based techniques transform the code into a
sequence of lexical tokens using compiler-style lexical analysis, as in Hipikat and
CodeBroker. Syntactic approaches convert source code into parse trees or abstract
syntax trees and perform their subsequent analyses on those trees, as in FrUiT,
Strathcona, RASCAL, and CodeBroker too. Semantics-aware approaches perform
their analysis at a more semantic level by relying, for example, on dynamic program
analysis techniques [1].

Data Requirements

This decision defines any particular constraints on the data for the system to be able
to work properly, such as the programming paradigm targeted by the system (e.g.,
object-oriented or procedural) or the particular programming language (e.g., Java,
Smalltalk, C) supported by the system. This decision is usually taken for pragmatic
reasons like being able to compare the results of a SCoReS with another one, which
requires being able to analyze the same source code, or being able to use a certain
auxiliary tool that can handle the data extraction or data processing.

The most common paradigm analyzed has been object-orientation [4, 13, 23],
probably because it is more prevalent in current industrial practice, although a few
are limited to the procedural paradigm [17]. However, many of the assumptions
made for object-oriented code can be translated to procedural and vice versa. Java
seems to be one of the languages most commonly supported by SCoReS [4, 7,
13, 23, 38]. Other languages tackled include C [17] and Smalltalk [18, 20, 21].
Although the choice of the actual implementation language may seem insignificant,
dynamically typed languages like Smalltalk may make it easier to quickly prototype
(recommendation or other) tools, but on the other hand dynamically typed languages
cannot ensure all assumptions made for statically typed languages like Java, for
instance, that a method signature can be uniquely linked to a type, that a method
returns variables of a particular type, or that its parameters are of a particular type.
Similarly, while the name of a method can indicate similar concerns in a language
like Java, for languages like Smalltalk (where there is no difference between the
name and the signature of a method) such indications are more difficult to validate.
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In addition to the language, there may be other particular requirements on the
data needed by the system, for instance, there should be sufficient example code
available that uses a particular API, as is the case for Strathcona, for example.

Intermediate Data Representation

This decision concerns the actual acquisition of the raw data into the most appropri-
ate format for facilitating further processing. Regarding this intermediate format, a
SCoReS’ designer can choose among graph-based approaches [1,9,12,17,22,30] by
using, for example, program-dependence or call graphs, tree-based approaches [6]
that reason about parse trees or other tree structures, approaches like RASCAL or
CodeBroker that use vectors or matrices as intermediate representation, or fact-
based approaches like FrUiT, Hipikat, or Strathcona, which organize their data
as sets of logic or database facts. Yet other approaches may reason about metrics
or simply about some textual data. Hybrid approaches combine several of these
internal representations.

Graphs and fact bases seem to be among the most popular representations, prob-
ably because they provide flexible and well-known mechanisms to find interesting
relations, and because these relations can be used to explain the rationale behind
a recommendation. Vectors or matrix representations provide high-performance
operations while keeping an exact account of the relevant facts. Textual and numeric
representations seem less appropriate for SCoReS probably due to the lack of
traceability they suffer from. Search-based techniques, for example, usually operate
atop matrix or vector representations instead of text representations.

Analysis Technique

The next key decision is the choice of the actual algorithm or technique that
produces relevant recommendations from the data extracted.

Traditional recommendation techniques are typically based on two sets: the
items to recommend and the users of those items. Recommendation systems
aim at matching users to items, by identifying the user’s needs or preferences,
and then locating the best items that fulfill those needs. To identify the user’s
need, recommendation techniques can take into account previous ratings of the
current user (social tagging), demographic information, features of the items, or
the fitness of the items to the current user. Once the matching is done, items can be
prioritized by ratings of their users. The combination of these strategy results leads
to different kinds of recommendation techniques. RASCAL is a typical example of a
SCoReS that relies on a traditional recommendation technique. In Chap. 2, Felfernig
et al. [10] provide a more elaborate discussion on traditional recommendation
techniques.

In practice, however, unless a SCoReS recommends API calls (items) on a
large and diverse set of example applications that use the API (users), it is often
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difficult for a SCoReS to rely on traditional recommendation techniques, because
the likelihood of having enough users for a given source code entity is small.
The most popular analysis techniques used by SCoReS therefore seem to be those
that calculate similarities between the input and the rest of the entities analyzed,
by using traditional classification techniques such as cluster analysis [3, 17, 37],
association rule mining [4], and identification of frequent itemsets [3,41]. Yet other
approaches essentially rely on basic [22] or advanced [23, 38] search techniques,
take inspiration from machine learning techniques or logic reasoning [5, 25, 26],
or, like Hipikat and Strathcona, rely on heuristics. Heuristics are a popular choice
because they can describe the expected similarity among entities that are not related
by frequent relations. Among classification techniques, those that are resilient to
minor exceptions (like frequent item-set analysis, or association rules) are privileged
over those that take into account all information (like formal concept analysis) so
that idiosyncratic characteristics that distinguish different source code entities do
not disrupt the result. In Chap. 3, Menzies [28] provides a more elaborate discussion
on data-mining techniques often used in software engineering and recommendation
systems. In Chap. 4, Inozemtseva et al. [14] provide a more elaborate discussion on
recommendation systems that rely on heuristics.

Filtering

Filtering (also known as data cleaning) aims to avoid the analysis of code entities
that are likely to produce noise in the results (false positives or irrelevant/uninterest-
ing recommendations). Many SCoReS use a two-phase filtering approach. The first
phase finds entities or attributes related to the user context. Discarding information
in this first phase is also known as prefiltering. Examples of prefiltering include
using a blacklist of stop words, not including imported libraries, excluding system
classes or generated code, etc. The second phase selects the most appropriate results
from the first phase. Discarding information in this second phase is called postfilter-
ing. Post-filtering aims at eliminating trivial, irrelevant, or wrong recommendations,
ordering the remainder by relevance, and presenting only the most appropriate ones.

Filtering is usually done by comparing source code entities or other artifacts to
the current context of the developer. This comparison can be done by similarity
based on some measure of similarity [4, 7, 13, 23, 38], by frequency based on
the number of occurrences as in FrUiT or Strathcona, or by rating based on
some scoring mechanism as in CodeBroker or Strathcona. Both prefiltering and
postfiltering can be done by using similarity, frequency, or rating information.
Frequency is usually a proxy for rating3 but frequencies tend to be preferred over
ratings so that it is possible to provide recommendation even at early stages of the
recommendation system (when no ratings have been given yet). Nevertheless, in

3If something is used by a lot of people, it may be a sign that people like it, and thus that it deserves
a good rating.
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order to use frequencies it is necessary to have several examples, and that might
be one of the reasons for having API support as the preferred task supported by
recommendation systems, at the expense of programming tasks and developer’s
questions [33] that might have more impact on their productivity. Another reason
that might explain the few approaches using ratings is that early SCoReS reported
them as being intrusive and a source of introducing noise [13]. Nevertheless, ratings
can be a good way of collecting data on the usefulness of the approach and to
move further toward using traditional recommendation techniques as opposed to
mere mining techniques.

5.3.7 Detailed Input/Output

Decisions regarding the detailed input/output concern the detailed information that
is required by the SCoReS (usually extracted from the developer’s context or
explicitly requested) as well as the quantity of results provided by the SCoReS.

Type of Input

In addition to the corpus (Sect. 5.3.4), the builder of a SCoReS needs to decide
what additional information the system needs for its analysis. This decision is a
refinement of the input mechanism and the nature of the input decisions described
in Sect. 5.3.5.

Whereas some recommendation systems like Hipikat may start from a search
query given by the user, others may start from a particular source code entity (partial
implementations, as in Strathcona or RASCAL, or empty implementations, as in
CodeBroker), pairs of entities or artifacts [6, 8, 9, 22] that need to be mapped in
some way, or sets of entities [12, 30] that may together represent some higher-level
concept.

If the user does not have a clear starting point, some systems allow finding
it using any information that can be reached from the information provided, for
instance, any identifier or literal in the file currently being edited.

Multiplicity of Output

The quantity of recommendations to be produced by a SCoReS should be chosen
with care. Providing concise and accurate results is of utmost importance in the
design of recommendation systems. Limiting the results to a reasonable set allows
developers to evaluate their appropriateness and value and to choose or discard them
accordingly. If a SCoReS produces a single result [6], this avoids the burden for
the user to select the most relevant result, potentially at the risk of missing other
relevant results. When multiple results [4, 7, 13, 23, 38] are returned, the burden
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of selecting the most appropriate ones can be reduced by prioritizing them rather
than just showing an unordered list of results, so that the amount of time spent on
evaluating recommendations to find a suitable one is minimized.

5.3.8 Support

This set of decisions focuses on aspects related to the suitability of the recommenda-
tions given by a SCoReS, with respect to the task it supports. It helps foresee ways
to validate how useful or correct the system is.

Empirical Validation

If the builders of a SCoReS want to evaluate their system beyond example-based
argumentation, it is important to decide what kind of empirical validations will be
conducted to evaluate their system. Typical ways of validating a SCoReS are case
studies (or in-depth analysis of particular applications) [12, 20, 30], benchmarks,
and/or comparisons with other systems [3, 8, 12, 13, 17], automated simulation of
usage of the system [13], comparing the system’s results against some kind of oracle
or gold standard [8,18,22], controlled experiments with dependent and independent
variables [22,38], or perhaps even a validation with practitioners [1,3,6,7,13,22,30,
38] or a field study. In Chaps. 10, 11, 12, and 13, Avazpour et al. [2], Said et al. [32],
Walker and Holmes [36], and Tosun Mısırlı et al. [34] (respectively) provide more
details on such validation issues.

The most common types of validation include analyzing how developers use the
system, or comparison with similar systems. The majority of approaches choose
open source systems for their validation. In such cases, it is essential to mention
precisely the versions used, to allow for easy replicability of the results of the
validation. Also consider whether or not to provide the corpus collected and the
results obtained. Giving others access to this information allows them to validate and
replicate each argumentation step, and facilitates the construction of benchmarks
and simulations. It also offers the possibility to validate if the corpus was correctly
built, and to identify differences between recommendations given by different
SCoReS using the same corpus.

Usefulness

Validating how relevant a SCoReS is for the task it supports [4, 20, 38] can be done
along three axes: assessing whether the SCoReS enables users to complete a given
task satisfactorily [7, 13, 22], faster [22], or with less intellectual effort.

Most often, to validate their system, SCoReS builders only conduct a case study
to argue how useful the recommendations provided by their system are, but refrain
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from performing a more quantitative validation to provide more empirical support
for their claims. Nevertheless, regardless of the type of validation chosen, be aware
of the requirements that entail a particular validation choice. For instance, being
able to claim satisfactory task achievement requires an unambiguous specification
of the task and when it is considered completed. Another example is the need
for a valid proxy to assess claims (like intellectual effort). Finally, it is important
to be aware that recommendations neglected by a user do not necessarily imply
incorrect or invalid recommendations. From our analysis of existing SCoReS and
their validation, we believe that there still remain a lot of opportunities for better
assessment of the usefulness of recommendation systems.

Correctness

Regarding the quality of the results produced by a SCoReS, typical correctness
measurements include precision (percentage of correct recommendations) [7,23,38]
and recall (to what extent the recommendations found cover the recommendations
needed) [7, 23, 38]. Relevance [7, 13, 38] could also be measured but is usually a
subjective view of the user, and therefore difficult to gather automatically.

Notice that in order to measure precision or recall, it is necessary to establish
the correct recommendations to compare against, for each user context. In practice,
these ideal correct answers might be unattainable depending on the nature of
the recommendations. Moreover, when conducting this type of validation, it is
important to be able to argue that the user contexts analyzed are significant examples
of typical user contexts.

5.3.9 Interaction

A final set of decisions focuses on how different types of users can interact with
the SCoReS. The first type of users are the developers that will use the SCoReS as
support for their work. Regarding this type of users, it is important to assess how
easy it is for them to interact with the SCoReS (usability) and to what extent they can
easily get hold of the SCoReS (availability). A second type of users are researchers
that may want to compare their own approach with the SCoReS. These users are also
concerned by the system’s availability but more importantly by the data availability
that would allow them to reproduce and compare results.

Usability

Regarding the usability of a SCoReS for its intended end-users (typically, develop-
ers), several criteria should be assessed carefully, such as the system’s response time
(is it sufficiently fast for practical usage?) [1, 6, 17], conciseness of the results (are
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the system’s recommendations sufficiently succinct and relevant for the end-user to
analyze and use?) [13, 22, 30], ease of use (is the system sufficiently easy to use
by its intended audience?), and scalability (is the system capable of handling larger
software systems?).

Measuring the usability of a SCoReS is not straightforward, however. The easier
aspects of usability that could be assessed by measuring are its conciseness or
its response time. However, even then, unless the SCoReS’s measurements are
compared against those of similar systems (which might not be possible), by
themselves these measurements may not provide a significant argument to use the
SCoReS.

System Availability

This decision describes under what form the system will be made available: as
source code like with FrUiT, as binaries only [8, 9, 12, 30], by providing only a
description of the system as for Hipikat and Strathcona, or keeping it unavailable
like with RASCAL and CodeBroker. This decision may vary significantly depend-
ing on what the intended goal of the system builders is, for example, whether the
SCoReS is a research prototype or a commercial system.

Availability of Recommendation Data

The last decision to consider is whether or not the empirical results of the validation
of the SCoReS will be made available. Leaving all produced data public allows other
researchers to reproduce the validation, and to compare results between systems.
There are several levels of data availability to contemplate. The corpus [18] gathered
or used by the SCoReS or the results [18] produced by the SCoReS on different
subject systems could be published with the system or distributed upon request.
Finally, the versions of the subject systems [4, 7, 13] analyzed could also be stored
so that they could easily be used to create benchmarks or to compare the results
already gathered for a given SCoReS with latter SCoReS (or future versions of the
same SCoReS).

5.4 Building a Code-Based Recommendation System

Having elaborated in Sect. 5.3 on the decision process and design decisions involved
in building SCoReS, in this section we walk through a set of SCoReS that we have
built and discuss some of the design choices taken throughout their development
and evolution. Figure 5.7 summarizes the history of these systems, starting from
MEnToR [20] and Clairvoyant, both implemented in the Smalltalk language, via
a first prototype of the Mendel system in Smalltalk [18], to its most recent



www.manaraa.com

5 Source Code-Based Recommendation Systems 119

MEnToR

Clairvoyant

Mendel for ST

Mendel for Java

Mendel for Java
with DB back end

Fig. 5.7 From MEnToR to Mendel

reincarnations for the Java language (see decision 5c in Table 5.2). The case study
serves a double purpose: it aims to illustrate the impact that certain design decisions
can have but also serves as an illustration of an actual process of building SCoReS.
Table 5.2 summarize the key decision choices for three of the systems in our case
study (i.e., MEnToR and both the Smalltalk and Java implementation of Mendel).
As we walk through the case study, we refer to these tables to highlight the key
design choices made. For instance, decision 1a refers to the Intended user decision
in the Intent category of Table 5.2 and we can observe that all systems we developed
intend to provide support for software developers or maintainers.

The recommendation systems that we built are based on four initial assumptions.
First, we assume that source code is the most reliable and most up to date artifact in
the software development process. This first assumption motivated us to consider
only program code as input (decision 4b) and no complementary information
(decision 3b). Furthermore, our SCoReS are particular in the sense that they do not
use a corpus consisting of multiple applications but focus on the application under
analysis alone to provide their recommendations (decision 3a). Second, we assume
that a lot of implicit and undocumented design knowledge somehow gets codified in
the source code. More specifically, our third assumption is that they get encoded as
coding idioms, naming conventions, and design patterns that tend to be adhered to
more or less uniformly across the application code. We refer to such codified design
knowledge in the code as “implementation regularities” (decision 1d). Our fourth
assumption is then that understanding and maintaining those regularities consistent
across the application (decision 1b) is beneficial to a program’s comprehensibility
and its evolution.

5.4.1 MEnToR

The first SCoReS we built upon these assumptions was called MEnToR (which
stands for Mining Entities To Rules) [20, 21].

Requirements

MEnToR aims to provide support to make developers or maintainers (decision 1a)
discover and understand relevant implementation regularities (decisions 1b and 1d).
One problem is that given that implementation regularities are usually implicit, often
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Table 5.2 Development decisions for three selected SCoReS

Decisions MEnToR Mendel for ST Mendel for Java

1. Intent
a. Intended user Developers or maintainers
b. Supported task Understand

implementation
regularities

Provide code suggestions about imple-
mentation regularities

c. Cognitive support What are the design
decisions hidden
in the
implementation?

How to implement/improve a source
code entity?

d. Proposed information Implementation regularities

2. Human Computer Interaction
a.Type of system IDE plugin
b. Type of recommender Finder Advisor
c. User involvement Evaluation of final

results
Selection of final results

3. Corpus
a. Program code Single application
b. Complementary

information
None

c. Correlated information (not applicable)

4. General Input/Output
a. Input mechanism User chooses the

application to
analyze

Implicit: source
code entities
opened in the
IDE’s editor

Implicit: source
code entities
selected in the
IDE’s editor

b. Nature of input Source code
c. Response triggers Reactive Proactive Reactive
d. Nature of output Textual description

and UML-based
visualization

Text links

e. Type of output Code regularities and
entities that match
them (or not)

Source code entities to add or modify

5. Method
a. Data selection Identifiers, extends,

implements
Identifiers, extends,

implements,
calls, types,
signatures,
Protocols4

Identifiers, fields
declared,
methods
implemented,
interfaces
implemented,
classes extended,
types used,
methods called,
super calls,
exceptions
thrown, modifiers

(continued)
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Table 5.2 (continued)

Decisions MEnToR Mendel for ST Mendel for Java

b. Type of analysis Syntactic and lexical
c. Data requirements Object-oriented/Smalltalk Object-oriented/Java
d. Intermediate

representation
Fact base

e. Analysis technique Association rule
mining

Heuristics

f. Filtering By confidence, by
support, using
structural and
heuristic filters

By similarity
(family), by
frequency
(dominant/
recessive
recommenda-
tions), by
rating

By similarity
(family) and by
frequency (domi-
nant/recessive
recommenda-
tions)

6. Detailed Input/Output
a. Type of input Application to

analyze
Source code entities in focus

b. Multiplicity of output Multiple results prioritized

7. Support
a. Empirical validation Two case studies Five comparisons

against an oracle
(simulation of
SCoReS usage)

One comparison
against an oracle
(recommenda-
tions
implemented
during evolution
of the subject
system)

b. Usefulness Less intellectual
effort

Quantitative validations: complete code

c. Correctness Relevance Precision and recall

8. Interaction
a. Usability Concise results Concise results, ease of use, scalability
b. System availability Unavailable Source code Unavailable
c. Data availability None Corpus, results,

subject systems
Subject system

they are not perfectly adhered to. This observation led us to establish some initial
requirements for MEnToR. First of all, the underlying mining technique chosen
had to be robust toward slight deviations. A technique tolerant to irregularities
but still capable of finding (decision 2b) relevant implementation regularities was
necessary to reduce false positives and false negatives. Second, in order to be useful
for developers, we wanted MEnToR’s results to be concise (decision 8). Indeed,

4Protocols are tags used in Smalltalk to indicate the role of a method and can also be regarded as
indicators of the interface that a method implements.

http://ss3.gemstone.com/ss/Mendel.html
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previous experiences with using techniques such as formal concept analysis to mine
source code for regularities [24, 27, 35] taught us that due to redundancy and noise,
the amount of results produced by such techniques was often too prohibitive to be
usable in practice. Having few and unique results facilitates the adoption of the
SCoReS by developers because it does not require much extra effort for analyzing
the final results (decision 2c). Third, the result should indicate the intention or
design decision behind the discovered regularities. The system needs to provide
the developers with clues to let them understand the rationale of why certain source
code entities are involved in some regularity (decision 1c).

Approach

To fulfill these requirements, MEnToR performs association rule mining (deci-
sion 5e) from diverse implementation characteristics (decision 5a) of the application
analyzed, which is given as input by the user (decisions 4a and 6a). MEnToR’s
approach bears a lot of resemblance with FrUiT (see Sect. 5.2.2), which mines
association rules that represent structural relations in the source code of applications
that use a given framework.

A concrete example of a rule found by MEnToR is:

Id W ‘Collection’
75%��! H W SequenceableCollection

which indicates that 75 % of the classes that have the keyword “Collection” in
their name also belong to the hierarchy of class SequenceableCollection . Other
characteristics taken into account (decision 5a) are the methods implemented. Note
that, given that the set of classes that belong to the hierarchy of Sequenceable

Collection and the set of classes that have the word “Collection” in their name
overlap, the following association rule could be mined as well:

H W SequenceableCollection 60%��! Id W ‘Collection0

However, to reduce redundancy in the results, after post-filtering (decision 5f)
MEnToR would report only the first rule, because it has a higher confidence.
Furthermore, in order to discover more high-level design decisions that are more
concise (decision 8) and require less effort to understand (decision 7b), MEnToR
also merges different association rules that affect an overlapping set of source code
entities into single, higher-level, regularities. But before merging association rules
into regularities, they are first filtered (decision 5f) to eliminate rules that are too
trivial or that have too low confidence. An example of a trivial rule is that all classes
in the hierarchy of a subclass are also in the hierarchy of its super-class, while a rule
with low confidence represents either very few entities or has a minimal overlap
between characteristics. MEnToR also filters other information that can produce
noise before and after calculating the regularities. Before calculating association
rules (prefiltering), MEnToR eliminates from the analysis source code entities that
are likely to be too generic (like the class Object) as well as implementation
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characteristics that are very common (like the keyword “get” that appears in
many method names). After calculating the regularities, MEnToR then prioritizes
them (decision 6b) by amount of entities they cover, by amount of implementation
characteristics shared by those entities, and by taking into account the rating given
previously to the regularity by other developers.

MEnToR is implemented as an IDE plugin (decision 2a) that performs its analysis
upon explicit request by the user (decision 4c). Every time a reported association
rule or regularity is selected, MEnToR updates a view showing the source code
entities that respect the rule, as well as some of those that do not respect it but should,
together with the characteristics that those entities do and do not share (decision 4e).
This view helps developers in better understanding the regularities and how well
they are adhered to in the code. Although the discovered rules are essentially shown
in textual format, they can also be visualized as a UML diagram that marks with
different colors the entities that respect the rule and those that do not, thus giving a
visual clue of the extent of the rule and its deviations (decision 4d).

Limitations

As useful as MEnToR could seem, after an initial validation on two case studies
(decision 7a) we realized two main flaws of MEnToR. The first one was that it still
required too much user involvement to evaluate the relevance of the discovered rules
and regularities (decisions 2c and 7c). The system was showing relevant regularities
to increase the user’s awareness of hidden design decisions in the code, even if
the user was already aware of those regularities and even if they were perfectly
respected by the code (in practice, the user was often more interested in those
entities that were breaking the rules). As such, the system was not giving actionable
information to the user. For those cases where a regularity was not perfectly
respected, even though the system highlighted those implementation characteristics
that a source code entity was missing according to that regularity, the association
rules were often too verbose and it was difficult for the user to assess how to use
that information to improve code quality.

A second issue was that although MEnToR could show a developer whether
or not a source code entity that was currently selected in the IDE lacked certain
implementation characteristics, MEnToR did not cope well with the evolution of
the application. Each time even a small change was made to the application, the
fact base (decision 5d) of implementation characteristics could change and the
association rule mining algorithm (as well as all subsequent processing) needed to
be re-triggered for the entire application, possibly leading to slightly different rules
and regularities.

To solve the first issue, we developed a new front-end for MEnToR called
Clairvoyant. To solve the second issue, we developed an entirely new SCoReS using
a different technique inspired by a closer analysis of MEnToR’s results.



www.manaraa.com

124 K. Mens and A. Lozano

5.4.2 From MEnToR to Clairvoyant

Clairvoyant is a new front-end for MEnToR that, depending on the adherence of
the source code entity in focus in the IDE to a rule, provides more actionable
information to the developer. Rather than seeing association rules as implications,
we can also regard them as overlapping sets of entities that satisfy different
characteristics. For example, the association rule

Id W ‘Collection’
75%��! H W SequenceableCollection

can be seen as two overlapping sets: the set of all classes that have the key-
word ‘Collection’ in their name and the set of all classes in the hierarchy of
SequenceableCollection, where 75 % of the entities in the first set also belong
to the second set. We call the first set the antecedent of the rule, the second set its
consequent, and the intersection of both sets the matches. Clairvoyant will flag an
implementation characteristic as a likely error if the source code entity in focus
is part of the antecedent but not part of the matches, as satisfied if the entity
is part of the matching set, and as an implementation suggestion if the entity is
part of the consequent but not part of the matches. Moreover, every time we click
on a recommendation, Clairvoyant updates a view showing the matching source
code entities as well as those that are in the antecedent but not in the consequent.
Although Clairvoyant improved the appreciation of the system by developers, the
fact that their changes were not reflected in the output of the system as soon as they
made them, but still required the recalculation of all recommendations, made it an
unrealistic system to support software developers and maintainers.

5.4.3 From Clairvoyant to Mendel

Mendel was developed to provide code suggestions about implementation reg-
ularities (decision 1b) to developers or maintainers (decision 1a) continuously
(decision 4c). That is, as soon as some code entity is changed, Mendel would update
its recommendations. However, Mendel also aimed at tackling three shortcomings
in the results proposed by Clairvoyant. A first shortcoming is the amount of
noise produced. Although developers showed an interest in the suggestions and
errors recommended by Clairvoyant, some rules are redundant. Often, Clairvoyant
finds regularities that are very similar to, or even subsets of, other regularities.
In such cases, it is difficult to choose automatically which of those regularities
make more sense to recommend or which are most informative while minimizing
noisy information. Noisy information could be caused, amongst others, by imple-
mentation characteristics that are part of the regularity by accident, for example,
because all entities sharing an important characteristic also happen to share a less
relevant characteristic. What recommendation is perceived as “best” may vary
from one developer to another. Second, some regularities are accidental (e.g.,
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“accidental polymorphism” when a bunch of methods have the same name even
though they do not implement a similar behavior) whereas others are essential and
capture entities implementing a similar concept, naming and coding conventions, or
important protocols and usage-patterns among entities. Third, the relevance of what
implementation characteristics to consider may depend on the type of source code
entity analyzed (e.g., reasoning in detail about the instructions contained in method
bodies may be more relevant when providing method-level recommendations than
when providing class-level recommendations).

To overcome some of these problems, we decided to build a new SCoReS called
Mendel. Mendel is based on the concept of “family” of a source code entity.
The concept of family aims at eliminating regularities found by chance. Entities
belonging to a same family are more likely to share implementation characteristics
that indicate essential design decisions. Given that many of the relevant regularities
recommended by MEnToR/Clairvoyant described entities belonging to a same
class hierarchy, we compute the family of class by taking the direct superclass of
that selected class and return all of this superclass’ direct subclasses, as well as
the subclasses of these direct subclasses, except for the class analyzed (the class
analyzed is excluded from the family). In other words, the family of a class is its
siblings and nieces. The family of a method is defined as all methods with the same
name that are in the family of its class.

The characteristics analyzed for a source code entity depend on its type. For
methods, Mendel takes into account methods called, the method protocol, super-
calls, referred types, and the AST structure. For classes, Mendel takes into account
the keywords appearing in their name, implemented methods, and types used.
These characteristics were chosen because they provide useful information to
developers or maintainers to improve their code (decision 1c). Based on Mendel’s
metaphor of a family’s genetic heritage, the characteristics of a source code entity
are called traits. The traits chosen were not exhaustive and we aimed to explore
different characteristics depending on the obtained results. Finally, the frequency
of occurrence of an implementation characteristic in the family indicates the
likelihood of that characteristic being relevant. Therefore, we call implementation
characteristics shared by the majority of the family, the dominant traits of the family,
while those that are shared by at least half of the members of the family (and
that are not dominant) are called the recessive traits of the family. Dominant traits
are shown as “must” recommendations while recessive traits are shown as “may”
recommendations.

Both Mendel and Clairvoyant prioritize suggestions (decision 6b). The key
suggestions in Mendel are the dominant traits, which correspond to the likely errors
in Clairvoyant, while the recommendations with lower confidence are the recessive
traits in Mendel, which correspond to the suggestions in Clairvoyant.

Mendel’s initial validation consisted of simulating Mendel’s usage with a partial
implementation. For each source code entity (i.e., class or method), the simulator
temporarily removed its implementation (leaving only an empty declaration), asked
Mendel for recommendations, and compared Mendel’s recommendation with the
entity that was removed. We ran such a simulation over five open source systems of
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different domains (decision 7a) and showed that Mendel proposed a limited amount
of recommendations that were calculated quickly in real time (decision 8). We also
concluded that at least half of the proposed recommendations were correct, and that
Mendel discovered 50–75 % of missing traits (decision 7c).

The concept of family had two purposes: reducing the set of entities analyzed
to give a recommendation so that the system could be responsive to source code
changes “on the fly” and reducing noise in the recommendations. As expected,
Mendel’s results are sensitive to the size of the family, which in turn depends on the
depth and width of hierarchies in the analyzed software system. Moreover, manual
inspection of some of the proposed recommendations indicated that the definition
of family might not be the most appropriate one for all types of implementation
characteristics.

We also did not manage to conduct a study with real developers, mainly because
of the chosen programming language (decision 5c). Although in research labs where
Mendel was conceived a few researchers were Smalltalk programmers and could
thus have been invited as participants in a user study, it turned out that most of
them had recently switched to another Smalltalk IDE (namely Pharo), making
the first version of Mendel irrelevant (it was implemented in and integrated with
VisualWorks Smalltalk). Therefore, Mendel was ported to Pharo. However, it then
turned out that those developers who were willing to be part of our user study were
working on very small Smalltalk applications only, which would have resulted into
too small families without dominant traits. For these reasons, we decided to port
Mendel to the Java programming language.

5.4.4 Porting Mendel from Smalltalk to Java

In addition to expanding the potential user base of our system (for purposes of
validation, among others), our port of Mendel to Java had another goal. While
porting it, we decided to extend it to be able to experiment with different alternative
definitions of family, for recommending different implementation characteristics.
For example, for a family of classes it could be more interesting to look at class-
related characteristics such as inheritance, whereas for a family of methods it could
be more interesting too look at method-related characteristics such as message
sends. One of our master students thus implemented a prototype of an Eclipse
plugin that supported several definitions of family, and storing the user rating of
recommendations so that recommendations could be prioritized depending on how
useful they had been for other developers.

As was already the case for the Smalltalk version, Mendel was designed to
reduce the amount of computation needed for proposing recommendations and
being capable of updating the recommendations “on the fly” as soon as any
change took place in the source code. An important performance problem was
encountered to conduct automated validations, however. In order to validate and
compare the recommendations given by different family definitions, it would be
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necessary to calculate the implementation characteristics for each family member,
for each family definition, for each source code entity, and this on each application
analyzed. This approach proved to be very inefficient because it would recalculate
the implementation characteristics several times for each source code entity. A more
efficient approach therefore would be to calculate all implementation characteristics
of each source code entity only once beforehand, and only then study the effect of
choosing a different family definition. That was the motivation for implementing the
latest version of Mendel: Mendel with a database storage back-end.

5.4.5 Adding a Database Storage Back-End to Mendel

Several existing Java code repositories were considered to study the effect of
Mendel’s family definitions on the quality of its recommendations. None of them,
however, offered the level of detail Mendel required, while at the same time
containing several versions of the code. The reason why we wanted to have several
versions of the same systems being analyzed was because of the particular set-up
of the validation we had in mind. Inspired by the kind of automated validation we
conducted for the Smalltalk version of Mendel, we now wanted to validate whether a
recommendation for a given source code entity in some version of a software system
was relevant, not by first removing it and then checking it against itself, but rather by
checking if it would actually be implemented in a later version of that system (and
how many versions it took before that recommendation actually got implemented).
To have the necessary information to conduct that experiment, we implemented
another Eclipse plugin to gather all implementation characteristics of all source-
code entities for all versions of all systems to be analyzed, and stored these as
structural facts in a database. We then experimented with and compared different
alternative definitions of families to assess if they gave rise to significant differences
in precision and recall per type of implementation characteristic on which the family
definition was based. Although more experimentation is still needed, partial results
of this analysis indicate that the choice of family definition indeed affects the
correctness of the results (depending on the type of recommended characteristic)
and that families should probably not be described by a single implementation
characteristic, but rather by a combination of different characteristics (as MEnToR’s
regularities did).

5.5 Conclusion

This chapter provided a brief overview of existing source code-based recommenda-
tion systems, including some we built. This overview illustrated the large variety of
decision points and alternatives when building a source code-based recommendation
system. We used this overview to highlight some of the key design decisions
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involved in building such systems. We organized these decisions along eight main
categories, which were divided along two orthogonal dimensions. One dimension
corresponds more or less to the development life cycle of the system, ranging from
the elaboration of its requirements, through its design and implementation, to its
validation. The other dimension focused either on the underlying approach or on
how the user interacts with the system. Regarding the approach, the main categories
of design decisions to address are related to the intent of the system, the corpus of
data it uses to provide its recommendations, the underlying recommendation method
it uses, and how to validate how well the system supports the task it aims to provide
recommendations for. Regarding the user interaction, the design decisions that need
to be taken involve how the end user is expected to interact with the system, at
different levels of detail. We also suggested a waterfall-like process in which to
address all these decisions, but this process should not be regarded as restrictive.
The design decisions could be visited in any other order that best fits the needs of
the system builder. Our main message, however, is that it is important to address all
these design decisions carefully and up front because, as we had to learn, making the
wrong decision can have a significant impact on the quality and perceived or actual
usefulness of the developed system. This set of key design decisions can also offer a
useful frame of reference against which to compare different systems, to understand
why one system is better, worse, or simply different from another one, or to steer
the development of one’s own system to better suit certain needs. In any case, we
hope that our set of design decisions and proposed process can be of use to guide
unexperienced builders of source code-based recommendation systems in making
them ask the right questions at the right time.
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Chapter 6
Mining Bug Data

A Practitioner’s Guide

Kim Herzig and Andreas Zeller

Abstract Although software systems control many aspects of our daily life world,
no system is perfect. Many of our day-to-day experiences with computer programs
are related to software bugs. Although software bugs are very unpopular, empirical
software engineers and software repository analysts rely on bugs or at least on those
bugs that get reported to issue management systems. So what makes data software
repository analysts appreciate bug reports? Bug reports are development artifacts
that relate to code quality and thus allow us to reason about code quality, and quality
is key to reliability, end-users, success, and finally profit. This chapter serves as a
hand-on tutorial on how to mine bug reports, relate them to source code, and use
the knowledge of bug fix locations to model, estimate, or even predict source code
quality. This chapter also discusses risks that should be addressed before one can
achieve reliable recommendation systems.

6.1 Introduction

A central human quality is that we can learn from our mistakes: While we may not
be able to avoid new errors, we can at least learn from the past to make sure the same
mistakes are not made again. This makes software bugs and their corresponding bug
reports an important and frequently mined source for recommendation systems that
make suggestions on how to improve the quality and reliability of a software project
or process. To predict, rate, or classify the quality of code artifacts (e.g., source files
or binaries) or code changes, it is necessary to learn which factors influence code
quality. Bug databases—repositories filled with issue reports filed by end users and
developers—are one of the most important sources for this data. These reports of
open and fixed code quality issues make rare and valuable assets.
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In this chapter we discuss the techniques, chances, and perils of mining bug
reports that can be used to build a recommender system that suggests quality.
Such systems can predict the quality of code elements. This information may help
to prioritize resources such as testing and code reviews. In order to build such a
recommendation system, one has to first understand the available content of issue
repositories (Sects. 6.2) and its correctness (Sect. 6.3). The next important step is
to link bug reports to changes, in order to get a quality indicator, for example, a
count of bugs per code artifact. There are many aspects that can lead to incorrect
counts, such as bias, noise, and errors in the data (Sect. 6.4). Once the data has been
collected, a prediction model can be built using code metrics (Sect. 6.5). The chapter
closes with a hands-on tutorial on how to mine bug data and predict bugs using
open-source data mining software (Sect. 6.6).

6.2 Structure and Quality of Bug Reports

Let us start with a brief overview discussing the anatomy and quality of bug
reports. We will then present common practices on mining bug data along with a
critical discussion on bug mining steps, their consequences, and possible impacts
on approaches based on these bug mining approaches.

6.2.1 Anatomy of a Bug Report

In general, a bug report contains information about an observed misbehavior or
issue regarding a software project. In order to fix the problem, the developer
requires information to reproduce, locate, and finally fix the underlying issue. This
information should be part of the bug report.

To provide some guidance and to enforce that certain information be given by
a bug reporter, a bug report is usually structured as a form containing multiple
required and optional fields. A bug report can thus be seen as a collection of
fields dedicated to inform developers and readers about particular bug properties.
The value of each field usually classifies the observed issue with respect to a
given property or contributes to the description or discussion of the underlying
issue. Figure 6.1 shows the structure of a typical bug report. Fields include the
following:

• Information on the product, version, and environment tell developers on which
project and in which environment the issue occurs.

• The description typically contains instructions to reproduce the issue (and to
compare one’s observations against the reported ones).

• Fields such as issue type (from feature request to bug report), assignee, and
priority help management to direct which bug gets fixed by whom and when.
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Fig. 6.1 Sample bug report and common bug report fields to be filled out when creating a new
bug report

Typically, bug reports allow discussion about a particular issue. This discussion
can but may not include the reporter. Comments on bug reports usually start
with questions about an issue and the request of developers to provide additional
information [15]. Later, many comments are dedicated to discussions between
developers on possible fixes and solutions. This shows that bug-tracking systems
should be seen primarily as a communication platform—first between bug reporters
and developers, later between developers themselves. The reporter is usually the
person that observed and reported the problem. She can be a developer (especially
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when considering bugs reported before the software has been released) but might
also be an end-user with varying degree of experience. Usually, the assignee is a
developer that should be considered an expert who can verify the validity of an
issue and knows how to resolve the underlying issue or at least which developer the
report should be assigned to.

When mining issue repositories, it is important to realize that the different bug
report fields and their content are filled by different groups with different expertise or
following different usage patterns. Bettenburg and Begel [8] showed that the usage
of issue management systems may differ greatly between individual teams and sub-
teams leading to problems in understanding bug reports and their background.

Individual fields have a different impact on the bug report and its handling.
The importance and impact of individual bug report fields is frequently the
subject of research studies. There exists a large degree of regularity on bug report
summaries [35] and on questions asked in report discussions between reporters
and assignees [15]. Bettenburg et al. [10] and Marks et al. [39] showed that
well formulated and easy to read bug reports get fixed sooner. Researchers have
shown a similar effect dedicated to other bug report fields. Bug reports with higher
priority get fixed quicker [39, 46]; the more people are involved in a bug report,
the longer it takes to fix the bug [1]—an important motivation for recommendation
systems to automatically determine assignees for bug reports [3, 28, 40, 53]. As bug
report descriptions and attached discussions contain natural text, the use of natural
language processing becomes more and more important. Natural language can
contain important information about related bug severity [37], bug reports [58, 64],
affected code [34, 55], etc.

Bug reports evolve over time: Fields get updated, comments get added, and
eventually they should be marked as resolved. Thus, mining bug reports at a
particular point in time implies the analysis of bug report snapshots. Considering
the history of a bug report and frequently updating the analysis results is important.
Knowing when and who changed which bug report field can be derived by parsing
the history of a bug report and adds additional information allowing to examine
a bug report of previous points in time and to capture its evolution. Consider a
bug report that got marked as fixed and resolved weeks ago but was reopened
recently. Not updating mined artifacts might leave data sources in a misleading
state: bug reports once marked as resolved and fixed might be reopened and should
be considered unresolved until being marked as resolved again.

It is also common to use values of bug report fields as criteria to filter bug reports
of particular interest. To determine code artifacts that were changed in order to fix
a bug (see Sect. 6.4), bug data analysts usually consider only bug reports marked as
fixed and resolved, or closed [4, 22, 69]. Reports with other statuses and resolutions
indicate that the reported issue is either not addressed, has been reopened, or
is invalid; thus, the set of changed artifacts is incomplete or might contain false
positives. The priority field is often used to filter out trivial bug reports and to restrict
the analysis to severe bug reports [18] while fields dedicated to project revisions are
frequently used to distinguish between pre- and post-release bugs [12,52,69]—bugs
filed before or after a product was released.
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When mining bug data,

• Identify the semantics of the individual fields
• Identify the individuals who fill out the fields
• Use only reports that match your researches (e.g., closed and fixed bugs)

6.2.2 Influence of Bug-Tracking Systems

In general, all bug reports, independent from their origin, share the purpose of
documenting program issues. But individual bug-tracking systems and development
processes reflect and create individual process patterns and philosophies. Thus, it is
important to understand that bug reports across different teams and projects should
be considered different, although the differences can be small. But it is essential to
identify these small differences as they are important to determine how bug reports
get created, handled, used, and finally resolved. Thus, bug-tracking systems impact
bug report content.

Depending on the goal of an issue repository analyst, bug-tracking and bug
report differences might be relevant or irrelevant. In this section, we briefly discuss
important aspects when targeting code quality-related recommendation systems:

Default Values. Creating a new bug report usually requires the bug reporter to fill
out a form similar to the one shown in Fig. 6.1. These forms usually populate
specific fields (e.g., bug type, bug severity) with default values. These values
commonly reflect the typical setting or expected default setting but also help
non-expert end-users to fill out all required fields. The drawback is that reporters
tend to fill out only those fields that are required and not already set, thus default
values can influence the values chosen by reporters [59]. Consequently, the
configuration of the issue-tracking system defining which default values to be
set may already impact the content of bug reports.

Report Types. Most bug-tracking systems allow not only bug reports but also
other types of issues, such as feature requests, improvements, or tasks. Bug-
tracking systems have different mechanisms to allow reporters to distinguish
between these report types. A good example is the difference between Bugzilla
and Jira, two commonly used bug tracking systems. In their standard configura-
tions, Bugzilla supports only bug reports but allows the user to mark reports as
enhancement requests using the severity field. In contrast, the Jira tracker not
only supports bug and enhancement reports as full types but also offers report
types like “task” and “improvement”:

• To file an enhancement request instead of a bug report in Jira, the reporter has
to set the field issue type accordingly.

• To perform the same task in Bugzilla, the reporter has to set the severity field
choosing the value enhancement.
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This unusual mechanism in Bugzilla has two consequences:

• To distinguish between bug reports and enhancement requests, we have to
analyze the severity field and not the issue report type.

• Bugzilla does not allow the distinction between high and low severe enhance-
ment requests.

This distinction between bug reports and enhancement requests might also leave
many enhancement requests filed as bug reports. Unexperienced reporters might
not know to use the severity field to file an enhancement request and relying on
the default severity value will automatically mark a report as bug.

Ambiguous Terms. Many fields offer ambiguous terms and vague definitions. In
the default configuration, Bugzilla marks bug reports as enhancement requests
using the severity field (see above). But the term “enhancement” is ambiguous.
Fixing a bug can be seen as an enhancement or improvement but software
repository analysts would like to see bug fixes being classified as “bug.” It is up to
the bug data analyst whether to mark Bugzilla enhancements as feature request,
improvement, or any other issue report type. But no matter how he decides, he
will most likely end up with noise due to misclassification.

Missing Fields. Bug-tracking systems like Google tracker or SourceForge lack
common bug report fields. These fields (e.g., report type, report priority, and
affected product) are managed by labels instead of explicitly given fields.
The advantage is that no default values exist. The disadvantage is that bring-
ing Bugzilla and Google reports to a uniform object model requires detailed
knowledge about possible fields and development processes. SourceForge also
abandons the report type and forces projects to use different issue management
system instances for different report types. While a bug is reported in the issue
management system, feature requests are reported in a different tracker. Although
an issue repository analyst can consider issue reports in a tracker to belong to the
corresponding report type category, it complicates the process of turning a bug
report into a feature request, or vice versa. A developer would have to delete the
original report, file a new report and transfer properties, fields, and discussion—a
process that can be considered to rarely happen. And even if developers would
transfer reports between trackers, timestamp values would become unreliable.

Default field settings and predefined report structures impact mined bug data.

6.2.3 Peril of Duplicate Bug Reports

Once a software contains a bug, it is not unlikely that the issue is detected by
multiple users. Although the underlying bug is the same, the user experience
may vary—a bug can cause multiple crashes and failures. Consequently, it is not
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uncommon that a bug gets reported more than once. But are duplicate bug reports
harmful? The answer to this question depends on the perspective.

Bettenburg et al. [11] showed that most developers do not consider duplicate
bug reports as a serious problem pointing out that duplicate bug reports add
additional bug description and details that help developers in their debugging
process. Dhaliwal et al. [20] performed an empirical study of crash-reports and
showed that grouping bug reports can effectively reduce the fix time of bugs by more
than 5 %. In cases in which bug reports provide only high-level details about the
issue, developers might benefit from additional reports providing additional details
and thus help with progress on that particular issue. On the other hand, duplicate
bug reports can cause unnecessary cost because detecting bug reports that should be
considered duplicates can be expensive.

From an issue repository analyst’s perspective, duplicate bug reports complicate
the mining and in particular the analysis processes. Within an issue repository,
duplicate bug reports are independent development artifacts. But for the purpose of
analyzing bug reports, these independent artifacts should be marked as dependent.
There exist a wide variety of approaches to automatically detect duplicate bug
reports [56, 58, 62, 64]. Software repository analysts and developers can use these
techniques to determine and validate duplicate bug reports. Once these bug reports
are marked as duplicates, analysts face the problem of how to aggregate the
information: should comments contained in different duplicate reports be seen as
one larger discussion group? What priority or severity is to be assumed for a set
of duplicate bug reports with different priority and severity values? Which report
is the master report and should be treated as such [11, 58, 64]? Depending on the
purpose of a study, the problem of duplicate bug reports is irrelevant and ignored.
For example, when identifying the number of fixed bugs per source artifact, not
dealing separately with duplicate bug reports may make sense because code changes
and their commit messages refer to only one of the related reports. Thus, related and
duplicate bug reports will not be associated with the corresponding code changes
(see Sect. 6.4.1) causing no duplicate bug count.

Identify if and how duplicate issue reports should be handled.

6.3 How Reliable Are Bug Reports?

Bug reports play an important role in software maintenance but also in recommenda-
tion systems related to code quality. Many mining approaches and recommendation
systems are based on issue repositories in some way (e.g., [3, 10, 22, 69]), either
as standalone artifact or as measurement for code quality. But how reliable are
bug reports? The quality of bug reports is a frequent topic of research studies [9,
10, 22, 27]. Many of these studies show that bug reports often contain too little
or incomplete information to reproduce and fix the reported issues. This raises
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further questions regarding the correctness of bug reports. If a bug report contains
incomplete information, can we expect the data that is available to be correct?
Antoniol et al. [2] and Herzig et al. [26] report that there exists a significant amount
of incorrectly classified bug reports—reports marked as “bug” but not referring to
any corrective maintenance task. Other fields in bug reports have been reported to
contain many incomplete or even incorrect data.

The quality of bug reports is an issue not only in open-source projects. Aranda
and Venolia [4] showed that even at industry “repositories hold incomplete or
incorrect data more often than not.” Bachmann and Bernstein [6] confirmed that data
quality issues can be an impacting factor in industry datasets and presented a sys-
tematic investigation of software process data quality and measures project-specific
characteristics that may be used to develop project-specific mining algorithms
taking the individual characteristics of software project into account. In a similar
study, Bernstein and Bachmann [7] also showed that “product quality—measured
by number of bugs reported—is affected by process data quality measures.”

6.3.1 Matter of Perspective

Many studies of bug report quality mention a gap between reporters and developers
(at least in cases in which reporters are not developers themselves). We already
discussed that the reputation of a reporter heavily impacts the probability that a
report gets fixed [10,22,27]. Consequently, submitting bug reports seems to be more
complicated than expected. Does a non-developer reporting a bug understand the
differences between and the meanings of the required bug report fields? Reporters
that are not developers are likely to be neither software nor development experts and
thus might not know the difference between a bug and a documentation issue. For a
user, a failure or unexpected behavior is a bug. But using the perspective of a user
to determine the quality of the source code might cause mismatches. A user who
observed bug stemming from outdated documentation does not refer to code issues,
although the developer might have to change the documentation in the source file.
Thus, mapping the source file change to the “bug” report and thus counting it as a
bug fix introduces false bug identifications, because the source code in the source
file is kept unchanged. However, since the user determines the issue report type
when submitting the issue, the report is submitted as bug report and thus suggests a
code issue.

The different perspective of reporters and developers might cause the reporter
to select wrong or misleading values when filling out the bug report form. Herzig
et al. [26] manually inspected over 7,000 bug reports of five open-source projects
and found a significant amount of incorrectly classified issue reports. Table 6.1
shows their reclassification results for “bug” reports. Each column of Table 6.1
refers to the “bug” reports of one investigated open-source project. The rows of
Table 6.1 represent the categories an issue report could be assigned to during manual
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Table 6.1 Reclassification of reports originally filed as “bug”. Taken from [26]

Classified category HttpClient Jackrabbit Lucene Rhino Tomcat Combined

bug 63.5% 75.1% 65.4% 59.2% 61.3% 66.2%
feature 6.6% 1.9% 4.8% 6.0% 3.1% 3.9%
documentation 8.7% 1.5% 4.8% 0.0% 10.3% 5.1%
improvement 13.0% 5.9% 7.9% 8.8% 12.0% 9.0%
refactoring 1.7% 0.9% 4.3% 10.2% 0.5% 2.8%
other 6.4% 14.7% 12.7% 15.8% 12.9% 13.0%

misclassifications 36.5% 24.9% 34.6% 40.8% 38.7% 33.8%

Table 6.2 Fractions of resolved issue reports whose type field got changed

HttpClient Jackrabbit Lucene Rhino Tomcat Combined

reports type changed 1/750 9/2413 1/2683 11/622 57/1242 79/7710

changed to bug 0 2/9 0 0 4/57 6/79

changed to non-bug 1/1 7/9 1/1 11/11 53/57 73/79

misclassified after
type change [ac-
cording to 25]

0 1/9 0 0/11 23/57 24/79

inspection. Thus, each cell of the table contains the proportion of original bug
reports and the category these reports were assigned to during manual inspection.
Between 6 % and 13 % of filed bug reports are improvement requests and up to
10 % contain documentation issues. The fraction of bug reports containing feature
requests lies between 2 % and 7 %. The striking number, however, is that on
average 33.8 % of reports filed against the investigated open-source projects are
misclassified.

Herzig et al. [26] reported similar results for feature requests and improvement
requests. Again, the reporter of a bug report might not know the difference between
a bug, a feature (adding new functionality), or an improvement request (improving
existing functionality)—even among developers, there exist different opinions on
when a bug is a bug or when an improvement is a new feature.

Table 6.2 shows the number of issue reports for which the issue report type was
changed at least once by a developer. Compared to the fraction of misclassified
reports, this fraction is very low and lies between 0.04 % for Lucene and 4.6 % for
Tomcat. Combining all five projects, the fraction of issue reports whose type was
changed at least once lies at 1 %—in contrast to the combined false classification
rate of 30 %. This evidence shows that developers rarely change the type of an
issue report. Thus, bug data analysts should not rely on developers to detect and
in particular to automatically correct issue report types. Interestingly, there exist
many more issue reports being newly marked as non-bugs than reports moved from
a non-bug category to “bug.”
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Fig. 6.2 Percent of resolved issue reports with respect to field changes. Priority, product, and
summary only changed in Bugzilla tracker projects Rhino and Tomcat

How about other bug report fields? Figure 6.2 shows box plots that represent the
fraction of reports for which the corresponding field was changed at least once. The
box plot shows that at most 20 % of the resolved issue report fields get updated.
Important fields like severity and priority (used to train recommendation systems on
severe or important bugs only) are updated for 5 % of the issue reports.

We discuss the consequences of misclassified issue reports on quality-related
models in Sect. 6.4.6.

If bugs are classified by reporters, check for possible misclassification.
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6.3.2 Recommending Bug Report Fields

There exist multiple approaches to predict the correct values of issue report fields.
Antoniol et al. [2] used linguistic data extracted from the issue report content to
classify issue reports into bugs and non-bugs with a precision between 77 % and
82 %. Common keywords marking issue reports as bug reports are “exception,”
“fail,” “npe” (null-pointer exception), or “error” [2].

Other studies have shown that it is also possible to predict the severity or
priority of issue reports [37, 44, 67], who should be assigned [3, 28, 40, 53], and
duplicate bug reports [56, 58, 62, 64]. These and other approaches can be used to
verify the correctness of specific report field values but should be used with care
to automatically correct issues regarding these fields. Most of these approaches
are based on heuristics and should not be used as replacement for careful manual
inspection. Manual inspection and quality assurance is key and should be conducted,
at least on a significant sample.

It is possible to automatically correct misleading bug report fields.

6.4 Mapping Bug Data

As discussed, there exist many research studies and approaches targeting bug reports
as standalone artifacts. Bug reports are key to software maintenance and therefore of
great interest to software developers and managers. But in many software projects
and companies, bug-tracking systems are separated from version control systems
(VCS) and thus do not allow immediate reasoning about code quality and those
artifacts that have shown to be defect prone. Thus, we need to relate bug reports
with code changes. Once we are able to identify which code changes were made in
order to fix which issue, we will be able to reason about code quality in detail, for
example, identifying the most defect-prone source artifacts.

Although mapping bug reports to code changes is a common task when mining
version archives, there exist surprisingly few fundamentally different mapping
strategies and even less studies investigating the correctness of these mapping strate-
gies and their impact on recommendation and prediction models based on these
mappings. Recently, researchers investigated whether natural language processing
and linguistic data can be used to improve existing mapping techniques. We discuss
these approaches in Sect. 6.4.6. However, many mapping strategies are based on
regular expressions searching for issue report references in version control commit
messages and using a set of negative filters (e.g., bug to be closed and fixed or the
bug report not to be marked as resolved before the code changes were committed) to
eliminate obvious false positive mappings. But before discussing the consequences
and issues regarding strategies to map bug reports and code changes, this section
starts with an overview on how to map reported bugs to code changes.
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6.4.1 Relating Bugs to Code Changes

Relating bug reports and code changes means finding references between
artifacts contained in two separate archives. Fischer et al. [21] and Čubranić
et al. [17] were among the first to search for references between code changes
in VCSs and bug reports contained in issue-tracking systems. Their approach is
straightforward. Commit messages of code changes may contain references to
bug reports (e.g., “Fixes bug 7478” or simply “fixing #2367”) that are easily
found using regular expressions. The result is a set of pairs of bug reports and
code changes for which the commit message of a code change is suspected
to contain a reference of the corresponding bug report. But this set might
also contain false positive relations. While regular expressions are excellent to
detect patterns of text, they ignore the context. Thus, a regular expression like
(bug|issue|fix):?\s*#?\s?(\d+) will match a commit message like
“fixing copyright issue: 2002 ! 2003.” Clearly, the bug ID 2002 matched by the
regular expression is referencing a date but not the bug report with the ID 2002.
Thus, most bug data analysts apply a set of filters to prevent such false positives to
be added to the final association set. Common filters are as follows:

Creation Order. The bug report should have been created before the code change
was applied.

Resolution Order. The code change should be committed before the report was
marked as “Resolved.”

Authors. The person who commits the change should be the same person who
marks the report “Resolved” (there exist many development processes in which
the fix requires review and the reviewer marks the report as “Resolved”).

Software Version. Filters might also consider the affected versions mentioned in
the bug reports and the branch(es) where the code change was applied.

Bug ID Ranges. Certain bug report ID ranges are more likely to introduce false
positives as others (e.g., small bug IDs are likely to reference a year, date, build,
or a line number instead of a report ID). Ignoring such references can be simple
but requires software projects with a considerably higher number of reported bug
reports than the chosen ignore-threshold or bug-tracking systems with a starting
bug id above the threshold. The alternative is to mark these references for manual
inspection—a very accurate but also very time-consuming process.

The used regular expressions and filters highly depend on the individual software
project and the underlying development process. There may exist clear commit
message formatting rules or none. Different projects use different bug report
processes. For example, Jira bug reports usually start with a project identifier
followed by a number (e.g., JRUBY-2002); this very simple difference can eliminate
many false-positive mappings such as the confusion between year numbers and
bug report IDs. Depending on these processes, their setups, and the development
process, regular expressions and false positive filters should be changed, added, or
removed. The overall approach described is illustrated in Fig. 6.3.

http://jira.codehaus.org/browse/JRUBY-2002
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Fig. 6.3 Mapping bug reports to code changes using regular expressions

Mapping bugs to changes requires filtering, which is largely project-specific.

6.4.2 Relating Bugs to Code Artifacts

The result of the above-described mapping process is a set of pairs of bug reports
associated with code changes. Each pair suggests that the bug report has been fixed
or at least targeted in the associated code change. Assuming that our bug mapping
strategy is perfect and thus introduces no false positives (see Sect. 6.4.3), we can
use the pairs of bugs and changes to reason about code quality. Each code change
touches a number of code artifacts. Mapping the fixed bug reports associated with
code changes to those artifacts changed by the change, we can identify those bug
reports whose resolution required a code artifact to be modified. Vice versa, for
each code artifact we can list the bug reports that caused a change in the artifact.
Similarly, we can also identify which developer applied changes required to fix
which bug reports or VCS branches in which bug reports were fixed.

The bug report aggregation strategy works if the association between bug reports
and code changes assigns each bug report to exactly one code change. But fixing bug
reports can be a complicated and time-consuming task. It is common that there exist
multiple code changes whose commit message claims to fix a bug report. Looking
at commit messages only, it remains undecidable which code change contributes
to the overall fix. The only thing we know is that the current last code change
is likely to be the last fix and thus likely to be part of the final bug fix. But the
contribution of the previous code changes associated to the same bug report remains
undecidable. There are multiple possible contributions of these code changes: (a) the
code change is part of the final fix but was incomplete, (b) the changes applied
were completely reverted by later changes, or (c) the changes applied were partially
reverted, thus the code change partially contributed to the final fix. Depending on
the actual contribution of the individual code changes, we would have to consider
a code change when aggregating quality data or not. To illustrate this, consider the
following example (also shown in Fig. 6.4): There exist three code changes (CC1,
CC2, CC3) whose commit messages state that bug report #123 has been fixed. Code
change CC1 gets completely reverted by CC2 that also applies a patch in FileB
that will be part of the initial fix. The changes applied by CC2 to FileC are again
overwritten by changes applied in CC3. Looking at the individual code changes,
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Fig. 6.4 Example of code changes overwriting each other. Which code change contributed to the
overall fix?

it is clear that CC1 does not contribute to the final fix whereas CC2 and CC3 do
contribute. Thus, the bug report #123 required changes to the files FileB and FileC
but not to FileA although FileA was changed twice.

Many studies and mining approaches do not consider source code analysis and
patch aggregation when counting the number of applied fixes per source artifact
(e.g., source files of binaries). Two frequently used heuristics are to use either the
last code change only or to count the distinct number of bugs per changed code
artifact. But both heuristics can be dangerous. The rationale behind using the last
code change only is that the last change is very likely to contribute to the fix and thus
proposes a low risk. But this rational assumes that the last applied change does not
revert or clean up earlier unnecessary changes. In these cases, choosing the last code
change selects exactly those code parts that should be considered as not changed.
Counting the distinct number of bug reports per changed code artifact considers all
applied changes but still does not identify code changes reverting earlier changes
or cleaning up code. For code artifacts that are fixed and cleaned up, each bug
ID is counted only once. But code artifacts being changes and later reverted will
still be falsely associated to bug reports and thus considered being fixed, although
the aggregated patch applied no semantical difference to the artifact. Consequently,
there exists no heuristic to aggregate bug reports over a set of code changes without
introducing mapping bias. The only safe way is to apply source code analysis and
to aggregate the individual patches to create a final summarizing patch and to use
this summary patch to detect changed source artifacts.
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Mapping code changes to bug reports is a crucial but also error-prone task. It is
very important to adjust mapping strategies to individual projects and to verify the
correctness of the strategy.

6.4.3 Mapping Bias

Although the described process of relating bug reports and code changes using
regular expressions is frequently used in state-of-the-art research studies, there
exists concerning evidence that such a simplistic process causes mapping bias—
an inclination of mapping only bug reports and code changes that fulfill certain
criteria. Even in realistic scenarios, data quality is low and some values are even
missing [45]. This fact is confirmed by Liebchen and Shepperd [38] who surveyed
hundreds of empirical software engineering papers to assess how studies manage
data quality issues. Their result is alarming: “[. . . ] only 23 out of the many hundreds
of studies assessed, explicitly considered data quality” [38] and the issue of noise
and missing data is not only limited to studies on relating bug data to code changes
but also occurs in software engineering effort and cost estimation [48, 61]. In this
section, we discuss error propagations and mapping limitations (the list is not
complete) and their impact on quality datasets.

Unmapped Bug Reports

The first problem of any mapping strategy is that it will not find code changes that
are bug fixes but state no references to a bug report or which state references in
an unrecognized format. Using regular expressions to detect explicit bug report
references (e.g., “1234” or “XSTR-1234”) will not cover text references such as
using the bug report title as commit message or phrasing the solution of a problem
described in the bug report. Thus, regular expressions are too limited to cover all
possible reference styles.

Bird et al. [12] showed that a selective mapping strategy, such as using only
regular expressions, introduces mapping bias. The mapping strategy determines
which bug reports and code changes get mapped and thus selects only those code
changes and bug reports that reference each other using a specific manner. Bug
reports and code changes using different, not handled, reference styles will be
ignored. In their study, Bird et al. showed that certain bug types are over-represented
leading to a biased quality dataset that “[. . . ] threatens the effectiveness of processes
that rely on biased datasets to build prediction models and the generalizable of
hypotheses tested on biased data.” This effect is not limited to open-source projects
but also present in industrial setups enforcing strict development guidelines [54].
It seems clear that bug data analysts should act to reduce the amount of noise and
bias introduced by mapping strategies. Possible solutions to this problem can be
applied from two different sides of the problem: as pre- or post-processing steps.
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Dealing with the problem as post-processing steps requires statistical methods to
deal with the noise already introduced. Kim et al. [33] introduced a noise detection
and elimination algorithm that eliminates data instances likely to be noise instances.
Similarly, Cartwright et al. [16] used simple data imputation techniques to deal with
the problem of missing data in software engineering datasets.

Dealing with the noise and bias problem from the other side, as preprocessing
step, should be seen as a two-track challenge. Bug data analysts have to come up
with less restrictive mapping strategies (see Sect. 6.4.6) that should be combined.
On the other hand, software repository analysts have to deal with the data created by
others. Empty commit messages or not-existing references cannot be overcome, no
matter which strategy will be used. Thus, we also need better tool support allowing
software developers to link artifacts with each other [14] and allowing repository
analysts to create more reliable and less biased quality datasets.

Mismatched Timestamps

In Sect. 6.4.1, we also used a filtering pipeline to remove false-positive mappings
such as bug reports closed before the fix was applied, or code changes applied
before the bug report was filed. Some filters use timestamps to determine the order
in which code changes and bug reports have been created, applied, and resolved.
But timestamps should be handled with care, especially if we compare timestamps
recorded by different systems and possibly on different machines and even time
zones. A slight offset between timestamps in VCSs and the issue repositories can
be fatal. A good example is the OpenBravo project. Their setup of VCS and issue
management system showed a timestamp offset of multiple hours over a period
of time. The effect is that when mining OpenBravo and mapping bug reports to
code changes, the described filtering mechanism eliminated many true positive bug
mappings. The problem is that many bug reports got created just hours before the
actual fix was applied. But the time offset between both servers caused the creation
time-stamp of the bug report to appear as being after the commit time-stamp of
the actual, manually verified bug fix. Possible solutions would be to allow a certain
time gap. But what is a good value for such a time gap? And should this time gap
be applied to the complete dataset or only to a particular subset?

Similar problems occur when using timestamps to decide if a bug fix candidate
was applied after the referenced bug report was recreated but before the bug was
as marked as resolved. Kim and Whitehead showed that “bug fixes times in buggy
files range from 100–200 days” [32]. Thus, using a time-based filtering mechanism
might be of little help. A time period of 200 days is long and, in active software
projects, we can expect many unrelated code changes to be submitted during such
long time periods.

Unmapped bug reports and mismatched time stamps can introduce bias in bug
data.

http://www.openbravo.com/
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6.4.4 Error Propagation: Misclassified Bug Reports

Section 6.3 already covered the issue of bug report reliability. In this paragraph,
this discussion is continued since unreliable bug reports contribute to mapping bias.
More specific, this section discusses the impact of misclassified issue reports when
mapping issue reports to source code changes.

Herzig et al. [26] used the mapping strategy described in Sect. 6.4.1 to map bug
reports to code changes, once including incorrectly classified bug report and once
excluding these noise instances. The authors reported that for all five investigated
open source projects, the percentage of misclassified bug reports that could be
mapped to code changes and thus to code files lies above 20 %. Thus, more than
20 % of code changes marked as bug fix should not be marked as such since the bug
report associated contained no bug description. Going one step further and counting
the distinct number of bug reports fixed in a source file (see Sect. 6.4.2), the authors
reported that on average 39 % of those source files being marked as having at least
one bug never had a reported bug.

To give some more details on the differences between original and classified
bug counts, Fig. 6.5 shows stacked bar plots displaying the distribution of bug
count differences among source files. Each stacked bar contains intervals reflecting
the difference between the original number of bug fixes (num_original_bugs) and
the number of classified bug fixes (num_classified_bugs). A positive difference
indicates that the number of defects fixed in the corresponding source files is actually
lower. For files showing a negative difference, more defect fixes could have been
found. While most files show no or only little changes to their bug count, there also
exist files with large bug count differences. The number of files for which more bugs
could have been found is marginal.

Misclassified reports can impact the bug count of source files and wrongly mark
bug-free source files as being bug prone.

6.4.5 Impact of Tangled Changes

The last important mapping bias source are simultaneously applied code changes
that serve multiple development tasks (e.g., fixing a bug and cleaning up code or
fixing a bug while implementing a new feature). We call these changes tangled. The
problem is that it is hard for bug data analysts, mapping bug reports to code changes,
to determine which code artifact changed in order to resolve either task. Which code
artifacts were changed to fix the bug report and which code artifacts were changed
to implement the new feature?

Kawrykow and Robillard [30] investigated over 24,000 code changes of seven
open-source projects and showed that up to 15 % of method updates were due to
non-essential differences. Later, Herzig and Zeller [25] manually inspected and
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Fig. 6.5 Histograms showing the difference between the original number of bug fixes
(num_original_bugs) and the number of classified bug fixes (num_classified_bugs) and their
frequencies across all five projects

classified more than 7,000 code changes from five open-source projects and found
that between 6 % and 15 % of all code changes, which contained references to at
least one issue report, are tangled. Independently, Kawrykow and Robillard [30]
and Herzig and Zeller [25] developed algorithms to separate tangled code changes
from each other. The algorithm proposed by Kawrykow and Robillard identified
non-essential changes allowing bug data analysts to map bug-fixing code changes
only to essentially changed source artifacts. The algorithms proposed by Herzig and
Zeller and a similar algorithm proposed by Herzig and Zeller [29] aim to untangle
any multi-purpose code change into so-called code change partitions—subsets of
applied code changes. Each such change partition contains those change operations
likely belonging together. Thus, different change partitions are likely to contain
change operations addressing different change purposes.
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Fig. 6.6 The impact of tangled changes on bug-counting models represented by the percentage of
the most defect-prone files that do not belong to this category because they were falsely associated
with bug reports

But what is the impact of tangled changes on bug-counting models counting the
number of distinct bug reports per source file? Herzig [24] showed this impact by
using the untangling algorithm proposed by Herzig and Zeller [25]. He generated
two datasets associating source files with the distinct number of bug reports whose
resolution required the corresponding source file to change. One dataset contained
the original bug fix count as discussed in Sect. 6.4.2. For the second bug count
set, Herzig associated bug reports only to those code artifacts modified by change
operations located in bug-fixing change partitions. He observed that between 10 %
and 38 % of all source files were assigned a different bug count. Between 2 % and
7 % of files originally associated with at least one bug report had no bug associated
after untangling. The impact on those files with the most bug counts is even worse.
Herzig sorted source files decreasingly once by their original number of associated
reports and once by their number of associated bug reports after untangling. He then
used the symmetric difference between the two sets containing the corresponding
top x% most defect-prone files. The results show that between 6 % and 50 % of
the most defect-prone files do not belong to this category because they were falsely
associated with bug reports. The detailed comparison results for all four open-source
projects can be found in Fig. 6.6. Furthermore, Herzig showed that the Spearman
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rank correlations between the files remaining in the intersections of original and
classified most defect-prone entities tends to be low: between 0.1 and 1 (median:
0.5; harmonic mean: 0.38).

Tangled changes can severely impact bug count models by associating bug fixes to
files that never had a bug.

6.4.6 Alternative Mapping Approaches

Using regular expressions as the only strategy to find references between bug reports
and code changes is clearly not good enough and is empirically proven to introduce
mapping bias—the subset of bug reports that can be linked to bug-fixing code
changes using regular expressions is not representative for the overall set of bug
reports being resolved in a software project [12].

In recent years, more and more alternative approaches of finding such artifact
references have been developed; Thomas [63] showed that there exists a trend in
using topic modeling to trace source code and bug reports. Topic modeling is used
to trace code artifacts and bug reports [5] and to specifically search for source files
that may be related to bug reports [55]. Wu et al. [66] manually inspected explicit
links between bug reports and change logs and extracted characteristic features
of bug reports and code changes linking each other. Based on these features, the
authors developed a prototype that “[. . . ] automatically learns criteria of features
from explicit links to recover missing links.” Wu et al. also evaluated the impact
of recovered links on software maintainability and defect prediction models and
report that ReLink yields significantly better prediction accuracy when compared
to traditional linking heuristics. Any mapping strategy linking bug reports and code
changes that is not relying on developers to explicitly mention bug report identifiers
when committing bug fixes or mentioning code change revisions when closing or
resolving bug reports will help bridge the gap between those bug reports that can
be linked to code changes and those that cannot be linked. Using natural language
processing and topic modeling, we can rely on the individual software repository
artifacts themselves.

The alternative to find links between bug reports and code changes retroactive
during the mining processes are development environments that link artifacts
already during the development process. Many commercial bug tracking, version
control, and code review environments and tools follow this strategy. This does not
only results in much more precise datasets that can be used to build recommendation
systems, but also provides more detailed development information for actual
developers, allowing them to instantly switch between development tools and thus
navigate fluently through related artifacts. Prominent examples are the commercial
tool series from Atlassian, or tools that support an automated mapping between
code changes and bug reports based on usage data collections (e.g., Mylyn [31],

http://www.tlassian.com/software
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Palantír [60], Hipikat [17], Jazz, or Team Foundation Server). Systems like Team
Foundation Server allow developers to attach related work items (e.g., bug reports)
to code changes (and vice versa) using drag and drop. Thus, the developer does
not have to manually add links to bug reports in her commit message but rather
selects proposed artifacts (based on heuristics) or simply selects these artifacts from
a given list of assigned tasks. Although such embedded mapping tools come with
their own challenges (dummy bug reports created to commit or incomplete links
between artifacts), these environments improve the linkage precision and number
of artifacts that can be linked at all dramatically. Although such systems are very
common in industry, they are rarely used in open-source projects. Thus, selecting
the right project also requires investigating which tools and processes are used in
the project.

There exist many approaches that may help to reduce bias in bug data. Using
programming environments integrating version control systems and issue man-
agement systems can significantly improve mapping accuracy.

6.5 Predicting Bugs

Knowing where bugs were fixed can be helpful and allows to review why artifacts
were bug prone and which processes or circumstances led to these issues. Even
more important, it allows to learn from these reviewed issues and to learn for future
development. One way of leveraging past bugs is to estimate and predict future
issues. Such bug prediction models have become popular in research and been
adopted in industry. The number of publications on bug prediction models is too
large to allow an extensive review of all approaches and findings. For a detailed
review on different fault prediction studies in software engineering, we recommend
the systematic literature review conducted by Hall et al. [23]. The authors provide
answers to research questions: “How does context affect fault prediction?” “Which
independent variables should be included in fault prediction models?” “Which
modeling techniques perform best when used in fault prediction?” [23].

The goal of this section is to explain how to turn your own mined historic data
into a bug prediction model. Along this path, analogous to the previous sections of
this chapter, we discuss issues and pitfalls when training bug-prediction models.

6.5.1 Relating Bugs and Code Features

One application of defect prediction models is to support decisions on how to
allocate quality assurance resources—for instance, which components to focus
upon during reviewing and testing. The models can help by predicting the number

http://msdn.microsoft.com/en-us/vstudio/ff637362.spx
http://jazz.net/
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Table 6.3 Overall defect
prediction model accuracy
using different software
measures on Windows Vista
[adapted with permission
from 50, 52]

Model Precision Recall

Change Bursts [52] 91.1% 92.0%
Organizational Structure [51] 86.2% 84.0%
Code Churn [49] 78.6% 79.9%
Code Complexity [41] 79.3% 66.0%
Social network measures [13] 76.9% 70.5%
Dependencies [68] 74.4% 69.9%
Test Coverage [47] 83.8% 54.4%
Pre-Release Defects 73.8% 62.9%

and sometimes the location of defects to be fixed in near future. This works because
defects are not equally distributed across the code base; therefore, defect prediction
models try to locate hot-spots in the system that are more defect prone than others.

Given a set of code artifacts, such a prediction model returns risk factors that
indicate:

• The likelihood that a given artifact contains software defects (classification)
• Even more precisely, a number of expected defects to be found within the code

artifact (prediction)

Most defect prediction models are based on product metrics (e.g., for each module,
its domain or its code complexity) and process metrics (e.g., for each artifact, past
defects found, or past changes applied). The model correlates these metrics with
defect likelihood and can then be used to check new code artifacts expressed by
their corresponding software metrics.

Over the years, researchers and engineers proposed hundreds of code metrics that
can be used to build defect prediction models. The approach is always the same. The
software metrics contains meta-information about each individual software artifact
(e.g., lines of code per source file or number of authors that changed a source file)
that describes code properties separating defect-prone code artifacts from artifacts
that are not. The type of meta information can be arbitrary and can also describe
process information (who developed the code how) or describe the dependencies
between individual code artifacts (e.g., using call graphs). Table 6.3 summarizes
the predictive power of post-release defect prediction models for Windows Vista
categorized by the type of software metrics the models are based on. The differences
in precision and recall measures show that the chosen set of software metrics heavily
influences the prediction performance of the corresponding prediction model. Also
note that these are numbers for the Microsoft’s Windows Vista software product
only. Switching to different software products in Microsoft or outside Microsoft
might lead to different prediction performances and might also result in different
rankings.

To allow machine-learning algorithms to learn which metrics correlate most with
defect-prone source files, the dataset to train defect prediction models (and also to
check their result and measure accuracy) requires a response or dependent variable
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Table 6.4 Excerpt of an example metrics set combining network dependency
metrics as described by Zimmermann and Nagappan [68] and the number of
distinct bugs fixed per source file

filename size sizeOut sizeIn density . . . numBugs

optimizer/ClassCompiler.java 12 11 2 0.2651 . . . 1
optimizer/Codegen.java 30 29 2 0.1678 . . . 37
JavaAdapter.java 23 22 3 0.2094 . . . 11
ast/AstRoot.java 11 7 6 0.4 . . . 0
Parser.java 73 71 5 0.0778 . . . 33
ast/FunctionNode.java 20 7 17 0.2710 . . . 1
IRFactory.java 69 67 3 0.0837 . . . 23
CompilerEnvirons.java 14 5 11 0.2197 . . . 3
ObjToIntMap.java 15 3 13 0.2667 . . . 0
ast/ScriptNode.java 24 10 18 0.2536 . . . 0
ScriptRuntime.java 98 51 72 0.0842 . . . 41
IdFunctionCall.java 9 4 7 0.375 . . . 0
Scriptable.java 122 2 121 0.0529 . . . 0
IdFunctionObject.java 37 8 32 0.1876 . . . 0
Context.java 148 46 130 0.0484 . . . 19
ast/XmlString.java 6 4 3 0.4 . . . 0
ast/NodeVisitor.java 54 2 54 0.0527 . . . 0
ast/XmlFragment.java 8 4 5 0.3928 . . . 0
ast/AstNode.java 67 9 64 0.0961 . . . 1

The path prefix “/org/mozilla/javascript/” has been elided from each

that adds quality-related information per code artifact. Using the approach described
in Sect. 6.4.2, we know which code changes fixed bug reports in which source files.
Thus, we can count the distinct number of bugs fixed per source file and use this
bug count as quality measurement—the more bugs were fixed, the lower the code
quality. Source files without bug fixes have a bug count of zero.

The resulting dataset is a table-like data structure that associates each code
artifact with a set of explanatory variables (metrics) and a dependent variable
(number of recorded bug fixes). Table 6.4 shows an example dataset for the
open-source project Rhino using network dependency metrics as described by
Zimmermann and Nagappan [68] and the bug count metric as described earlier.
The chosen code dependency network metric set is used exemplary and can be
replaced or extended by any other metric set that can be collected for source files.
For more details on the individual metrics, we refer the reader to the original dataset
description [68]. The complete sample dataset as shown in Fig. 6.4 is available
as a comma-separated text file (CSV) for download from http://rsse.org/book/c06/
sampleset.csv.

In the next section, we use this dataset to model the relationship between the
dependent variable and the explanatory variables using machine learners.

Relating software, history, or process metrics with bug fixes allows accurate bug
prediction models to be built.

http://rsse.org/book/c06/sampleset.csv
http://rsse.org/book/c06/sampleset.csv
https://developer.mozilla.org/en-US/docs/Rhino
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Fig. 6.7 (a) Random sampling or stratified random sampling splits one snapshot of a software
project into 2/3 training and 1/3 testing parts. Performing multiple splits (holdouts) and reporting
mean accuracy measures reduces sampling errors. (b) Using two releases or versions of one or
different project histories is closest to what can be deployed in the real world where past project
data is used to identify defect-prone entities in on-going or future releases

6.5.2 Training Prediction Models

To build and evaluate a bug prediction model, one needs a training and a testing
set. Figure 6.7 shows two common approaches to train and test bug prediction
models. Randomly splitting a single dataset into two subsets is frequently used if
only one revision of a software project is available. The single dataset is split
into a training set (usually containing two-thirds of the original set’s artifacts) and
into a testing set (see Fig. 6.7a). The intersection of the training and testing set is
empty while the union of training and testing data matches the original dataset.
Sampling datasets includes fuzziness: a single random sample can produce good
results although the prediction model performs poorly on average. Thus, sampling
is often combined with repeated holdout setups. Instead of splitting once, the dataset
gets repeatedly split into training and testing subsets and for each cross-validation
or holdout precision, recall, and accuracy are recorded. These measures correspond
to the mean values over the corresponding set of performance holdouts.

The alternative of splitting one revision of a software project apart is to use two
revisions of the software code base (see Fig. 6.7b). This method is commonly used
to train and test prediction models based on releases. The earlier release serves as a
training set while the other, later revision, is used to test the prediction model. Mod-
els are trained on revisions of different software projects. These forward or cross-
release prediction setups are closest to what can be deployed in the real world where
past project data is used to identify bug-prone entities in ongoing or future releases.

The training data will then be passed to a machine-learning algorithm (e.g.,
support vector machine). The resulting model will then accept new instances and
returns a predicted value. Prediction models can either be trained as classification
models or regression models. Classification models usually associate instances
with a category (bug-prone or not bug-prone) while regression models predict the
exact number of bugs to be expected in the corresponding code artifact. There are
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many statistical tools and algorithms on how to actually train machine learners
for bug prediction purposes and there exist many different machine learners that
can be used to predict bugs. Different models may assume different preconditions
on the operation dataset and the predictive power of the models not only depends on
the used metric sets but also on the machine learner used to predict bugs. In Chap. 3,
Menzies [43] discusses this topic in more detail.

6.5.3 From Prediction to Recommendation

Many prediction models and their predicted values can be interpreted as recom-
mendations. The predicted values estimate future events or future situations. This
knowledge can be used to take action to support or work against a predicted trend
or a predicted result. Bug prediction models predict the expected number of bugs to
be fixed in code artifacts. Thus, the prediction results of these models can be used to
determine those artifacts that should be tested or reviewed more carefully. Turning
a prediction model into a recommendation system usually requires an interpretation
of the predicted values and insights that allow to draw possible consequences for the
software project.

Discussion the transformation between prediction to recommendation systems
goes beyond the content of this chapter but will be discussed in later chapters.

Just as data quality, the interpretation and consequences of predictor and
recommendation models should be constantly questioned.

6.6 Hands-On: Mining Bug Repositories

After discussing the foundations (and perils!) of mining, let us now provide some
hands-on experience. This section focuses on mining issue repositories, and the next
one will focus on how to predict future bugs.

To mine issue repositories, we use the open-source, general purpose mining
framework Mozkito. It provides the necessary extraction and parsing functionality
required to bring bug reports into a uniform yet powerful format. Out of the box,
Mozkito supports the open-source bug-tracking systems Bugzilla, Jira, Google
Project Hosting, and others. Adding a new or customized connector requires the
user to implement one interface.

The API of the uniform bug data model is shown in Fig. 6.8 as a UML class
diagram. The user can decide whether to operate on an SQL database or to use Java
objects and the Mozkito framework. The bug data model contains the most common
bug report fields including attachments, discussions, and bug report history. For each
bug report mined, Mozkito persists exactly one Report object in the database that
can later be restored (see Step 3) and used for analysis purposes.

http://code.google.com/
http://www.tlassian.com/software/jira
http://bugzilla.org/
http://mozkito.org/
http://code.google.com/
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+ getAssignedTo() : Person
+ getAttachmentEntries() : List<AttachmentEntry>
+ getCategory() : String
+ getComments() : SortedSet<Comment>
+ getComponent() : String
+ getCreationTimestamp() : DateTime
+ getDescription() : String
+ getHistory() : History
+ getId() : String
+ getKeywords() : Set
+ getPriority() : Priority
+ getProduct() : String
+ getResolution() : Resolution
+ getResolutionTimestamp() : DateTime
+ getResolver() : Person
+ getSeverity() : Severity
+ getSiblings() : SortedSet<Report>
+ getStatus() : Status
+ getSubject() : String
+ getSubmitter() : Person
+ getSummary() : String
+ getType() : Type
+ getVersion() : String
+ timewarp(timestamp : DateTime) : Report

Report

+ get(from : DateTime,to : DateTime) : History
+ get(author : Person) : History

+ getBugId() : String
+ getElements() : SortedSet<HistoryElement>
+ getId() : long
+ isEmpty() : boolean
+ iterator() : Iterator
+ last() : HistoryElement

History

+ getAuthor() : Person
+ getBugId() : String
+ getChangedDateValues() : Map<String, DateTimeTuple>
+ getChangedEnumValues() : Map<String, EnumTuple>
+ getChangedPersonValues() : Map<String, PersonTuple>
+ getChangedStringValues() : Map<String, StringTuple>
+ getFields() : Set<String>

+ getId() : long
+ getText() : String
+ getTimestamp() : DateTime

HistoryElement

+ getAuthor() : Person
+ getDescription() : String
+ getFilename() : String
+ getId() : String
+ getLink() : String
+ getMime() : String
+ getSize() : long
+ getTimestamp() : DateTime
+ toURI() : URI
+ toURL() : URL

AttachmentEntry

+ getAuthor() : Person
+ getBugReport() : Report
+ getId() : int
+ getMessage() : String
+ getText() : String
+ getTimestamp() : DateTime

Comment

0..*
1

1

1

0..*

1

0..*

1

Fig. 6.8 Mozkito bug report model. The UML diagram lists only the most important methods

6.6.1 Step 1: Getting Mozkito

Mozkito is an open-source mining framework. For download and installing instruc-
tions, refer to the Mozkito website. To mine issue repositories, we use the Mozkito
issues module. Once the Mozkito issues module is built (see Mozkito website for
instructions), the Mozkito folder

mozkito-tools/mozkito-issues/target/

contains the executable jar file that can be used to mine issue repositories (referred
to as mozkito-issues.jar for the sake of brevity):

mozkito-issues-<version>-jar-with-dependencies.jar1

1Replace <version> with the downloaded version number of Mozkito.

http://mozkito.org
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1: #### DATABASE PROPERTIES ####
2: database.host=localhost
3: database.driver=org.postgresql.Driver
4: database.name=moskito_rhino
5: database.user=<USER>
6: database.password=<PASSWD>
7: ############################
8: #### BUG TRACKER PROPERTIES ####
9: tracker.type=BUGZILLA
10: bugzilla.overviewURI=https://bugzilla.mozilla.org/buglist.cgi

?product=Rhino
11: tracker.uri=https://bugzilla.mozilla.org

Fig. 6.9 Mozkito-Issues configuration to mine the publicly available issue management system
for the Mozilla product Rhino

6.6.2 Step 2: Mining an Issue Repository

To demonstrate how to use Mozkito-Issues to mine issue repositories, we will mine
the publicly available issue management system of Mozilla and focus on project
Rhino—a Javascript engine written in Java. The restriction to project Rhino is for
demonstration purposes, only.

Mozkito-Issues can be configured using JVM arguments. To get a list of all
available Mozkito arguments (required arguments will be marked) execute:

java -Dhelp -jar mozkito-issues.jar.

The configuration of Mozkito-Issues depends on the target bug-tracking system and
the issue management system URL. Mozilla uses the bug-tracking system Bugzilla
that can be accessed using the issue management system URL: https://bugzilla.
mozilla.org. Figure 6.9 summarizes the used Mozkito arguments as Mozkito
configuration file (<config_file>). To let Mozkito use the configuration file,
simply start Mozkito specifying the config JVM argument:

java -Dconfig=<config_file> -jar mozkito-issues.jar.

Line 10 of the configuration (Fig. 6.9) specifies the target product (in our case
Rhino). The configuration file also contains the required database connection prop-
erties that will be used to persist the uniform data format. The listed configuration
requires a PostgreSQL database running on localhost. Most likely, these settings
need to be adapted to fit a given environment (e.g., MySQL and different host name).

Depending on the size and speed of the issue repository, it may take several hours
for Mozkito to fetch and mine all reports found in the target bug-tracking system.
Once the mining process completed, the specified database should be populated
with persisted Report instances (see Fig. 6.8), one for each bug report found in the
mined bug-tracking system. Bug reports requiring additional permissions or that
cause parsing errors will be dropped during the mining process.

https://bugzilla.mozilla.org
https://bugzilla.mozilla.org
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1 public int analysis() {
2 int result = 0;
3

4 /*
5 * please use the Mozkito documentation to see
6 * how to create PersistenceUtil instances
7 */
8 final PersistenceUtil persistenceUtil =
9 this.databaseArguments.getValue();

10

11 final Criteria<Report> loadCriteria =
12 persistenceUtil.createCriteria(Report.class);
13

14 final List<Report> allReports = persistenceUtil.load(
loadCriteria);

15 for (final Report report : allReports) {
16 final History reportHistory = report.getHistory();
17

18 // we are only interested in HistoryElements
19 // changing the report type
20 final History reportTypeHistory = reportHistory.get("type");
21 if (!reportTypeHistory.isEmpty()) {
22 ++result;
23 }
24 }
25 return result;
26 }

Fig. 6.10 Sample source code analyzing the history of issue reports counting the number of
reports for which at least one history entry changing the report type can be found

6.6.3 Step 3: Analyzing Bug Reports in Java

Once the content of the target issue management system is persisted, we can use
Mozkito to analyze the mined issue reports. Figure 6.10 shows Java source code that
loads the mined issue reports from the database and analyzes the report’s history.
The purpose of the program is to investigate for how many issue reports the report
type was at least once changed. In other words, we want to analyze how many issue
reports were filed as bug reports but resolved as feature or improvement request, or
vice versa.

The PersistenceUtil class (line 8 in Fig. 6.10) of Mozkito can be used to load
persisted objects from the database into your program.2 Once we load the Report
instances, we iterate over them (line 15) and check for the report history concerning
the report type (lines 16 and 20). If this history of modifications applied to the report
type is not empty (line 21), we find a report whose report type is changed at least
once. We discussed the result of this particular analysis in Sect. 6.3.

2Please see the Mozkito documentation on how to create such a PersistenceUtil instance.
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The presented sample code demonstrates how easy bug report analysis can be
once we transformed the bug-tracking content into a uniform, persisted data format.
You can use the code snippet presented in Fig. 6.10 as a blueprint to create your own
issue report analysis.

6.6.4 Relating Bugs to Changes

As discussed in Sect. 6.4.1, there exist multiple strategies and approaches to map
bug reports to code changes correctly and exhaustively. The general mining tool
Mozkito ships with a number of state-of-the-art mapping techniques to associate
bug reports with corresponding code changes. Discussing all strategies supported
by and their possible combinations would exceed the scope of this chapter. Instead,
this section explains how to use Mozkito to use the most common and simplest
stand-alone strategy to efficiently map bug reports to code changes using regular
expressions. The wiki pages of Mozkito provide a more detailed overview of built-
in mapping strategies and instructions on how to perform these mappings. Please
note that this mining step requires a mined VCS. Please read the corresponding
wiki page (https://wiki.mozkito.org/x/FgAz) on how to mine VCSs using Mozkito.

Mozkito allows the user to combine multiple mapping engines. Each engine can
be seen as a voter returning a confidence value for each pair of bug report and code
change. The confidence value corresponds to the likelihood that the provided bug
and change should be mapped to each other. To aggregate the different confidence
values, we use a veto-strategy3—if the confidence value of one engine is below a
certain threshold, the pair of report and change are not mapped to each other. In our
case, we want to limit Mozkito to use the following engines:

Regular Expression Engine. To search for explicit bug report references in com-
mit messages.

Report Type Engine. To consider only bug reports to be mapped (our goal is to
map bugs to code changes).

Completed Order Engine. To allow only a pair of associated reports and code
changes for which the code change was applied before the report was marked
as resolved.

Creation Order Engine. To allow only a pair of associated reports and code
changes for which the issue report was filed before the code change was applied.

Timestamp Engine. To enforce that the associated report must be marked as
resolved at most one day after the code change was committed.

To configure Mozkito to use exactly this set of engines, we have to add the following
line to our already existing Mozkito configuration file (<config_file>):

3There exist more aggregation strategies. Please see the Mozkito manual for more details.

https://wiki.mozkito.org/x/FgAz
https://wiki.mozkito.org/x/LoAj
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1.0 "({match}bug:?\\s*#?##ID##)" CASE_INSENSITIVE
1.0 "({match}bugs?:?\\s*(#?\\p{Digit}+,)*#?##ID##)"\
CASE_INSENSITIVE
1.0 "({match}https?://bugzilla.mozilla.org/show_bug.cgi\
\\?id=##ID##)" CASE_INSENSITIVE
1.0 "({match}#\\s?##ID##)" CASE_INSENSITIVE
1.0 "({match}BZ\\s?:?\\s*##ID##)" CASE_INSENSITIVE
1.0 "({match}fix\\s?:?\\s*##ID##)" CASE_INSENSITIVE
1.0 "({match}fixing\\s?:?\\s*##ID##)" CASE_INSENSITIVE
-100.0 "({match}test cases for") CASE_INSENSITIVE
-100.0 "({match} revert fix for") CASE_INSENSITIVE

Fig. 6.11 Sample <REGEX_FILE> specifying the regular expressions to be used to find bug
report reference candidates in commit messages. Note that backslash characters must be escaped

mappings.engines.enabled=[RegexEngine, ReportTypeEngine, \
CompletedOrderEngine, CreationOrderEngine, TimestampEngine]

mappings.engines.reportType.type=BUG
mappings.engines.timestamp.interval="+1d 00h 00m 00s"
mappings.engines.RegexEngine.config=<REGEX_FILE>

The referenced regular expression file (<REGEX_FILE>) should contain the project-
specific regular expressions Mozkito will use to match possible bug report refer-
ences. The regular expression file can specify one expression per line including a
confidence value to be returned if the regular expression matches (first number in
line) and a specification whether Mozkito should treat the expression case sensitive
or not. Mozkito iterates through all regular expressions in the <REGEX_FILE> from
top to bottom and stops as soon as one regular expression matches. A typical regular
expression file that can also be used for our Rhino project is shown in Fig. 6.11.

Once all the above-discussed lines are added to the Mozkito configuration file
(<config_file>), the Mozkito mapping process can be started using the following
command:

java -Dconfig=<config_file> -jar mozkito-mappings.jar4

There exist mining infrastructures allowing immediate mining actions. Using such
infrastructures eases reproduction and allows comparison to other studies.

Exporting Bug Count Per Source File

As a last step, we export the mapping between source files and bug reports into a
comma-separated file that lists the distinct number of fixed bug reports per source
file. To export the mapping we created above into a comma-separated bug count

4mozkito-issues-<version>-jar-with-dependencies.jar
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file, we can use the built-in Mozkito tool mozkito-bugcount located in the folder
mozkito-tools/mozkito-bugcount/target/. To export bug counts per source
file, we execute the following command:

java -Dconfig=<config_file> -Dbugcount.granularity=file

-Dbugcount.output=<csv_file> -jar mozkito-bugcount.jar5

where <csv_file> should point to a file path to which the bug count CSV file will
be written.

In the next section, we use the <csv_file> to build a sample defect prediction
model that can be used as basis for recommendation systems.

6.7 Hands-On: Predicting Bugs

After mining VCS and issue management system and after mapping bug reports
with code changes, this section provides a hands-on tutorial on how to use the
statistical environment and language R [57] to write a script that reads a dataset
of our sample format (Fig. 6.4) as created in the previous section, performs a
stratified repeated holdout sampling of the dataset, trains multiple machine learners
on the training data before evaluating the prediction accuracy of each model
using the evaluation measures precision, recall, and F-measure. Precision, recall,
and f-measure are only one possibility to measure prediction or classification
performance. Other performance measures include ROC curves [19] or even effort-
aware prediction models [42].

The complete script containing all discussed R code snippets is available for
download from http://rsse.org/book/c06/sample.R. The dataset we use for our
example analysis below is also available for download from http://rsse.org/book/
c06/sampleset.csv.

6.7.1 Step 1: Load Required Libraries

The script will use functionalities of multiple third-party libraries. The script will
make heavy use of the caret [36] package for R. The last statement in the first R
snippet below sets the initial random seed to an arbitrary value (we chose 1); this
will make the shown results reproducible.

> rm(list = ls(all = TRUE))
> library(caret)
> library(gdata)
> library(plyr)

5mozkito-bugcount-<version>-jar-with-dependencies.jar

http://rsse.org/book/c06/sampleset.csv
http://rsse.org/book/c06/sampleset.csv
http://rsse.org/book/c06/sample.R
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> library(reshape)
> library(R.utils)
> set.seed(1)

6.7.2 Step 2: Reading the Data

To load the sample dataset containing code dependency network metrics [68] and
bug counts per source file (as described in Sect. 6.5.1 and shown in Fig. 6.4), we use
the following snippet that reads the dataset directly over the Internet.

After execution, the variable data holds the dataset in a table-like data structure
called data.frame. For the rest of the section, we assume that the column holding
the dependent variables for all instances is called numBugs.

> data <- read.table(
+ http://rsse.org/book/c06/sampleset.csv,
+ header=T, row.names=1, sep=",")

We can now access the dataset using the data variable. The command below
outputs the numBugs column for all 266 source files.

> data$numBugs
[1] 1 37 11 0 33 1 23 3 0 0 41 0 0 0 19 0 0 0 1

[20] 0 7 0 6 2 3 11 8 3 10 0 1 10 0 0 0 3 0 25
[39] 5 1 1 0 3 0 1 3 2 2 1 0 0 0 0 2 0 0 1
[58] 0 4 0 1 1 0 0 0 11 2 0 43 0 1 1 1 0 0 3
[77] 0 0 0 4 1 0 2 0 2 0 0 0 0 3 0 0 0 0 0
[96] 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[115] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[134] 0 0 1 0 0 0 0 0 7 1 0 0 0 0 0 0 1 10 4
[153] 7 2 2 4 4 5 0 0 1 4 0 0 1 0 1 3 0 0 2
[172] 1 2 0 0 0 0 0 0 0 1 0 0 0 0 9 0 1 1 4
[191] 1 0 1 1 2 0 0 12 3 16 0 1 3 1 0 6 3 2 0
[210] 3 2 0 0 0 0 0 22 1 6 1 4 1 0 6 0 6 1 0
[229] 0 0 2 1 0 0 0 1 0 0 4 2 3 0 0 0 0 0 0
[248] 0 0 1 1 0 0 0 0 1 0 2 0 0 0 0 0 0 0 1

6.7.3 Step 3: Splitting the Dataset

First, we split the original dataset into training and testing subsets using stratified
sampling—the ratio of files being fixed at least once in the original dataset is
preserved in both training and testing datasets. This makes training and testing sets
more representative by reducing sampling errors.

The first two lines of the R-code below are dedicated to separate the dependent
variable from the explanatory variables. This is necessary since we will use only
the explanatory variables to train the prediction models. In the third line, we
then modify the dependent variable (column numBugs) to distinguish between
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code entities with bugs (“One”) and without (“Zero”). Finally, we use the method
createDataPartition to split the original datasets into training and testing sets
(see Sect. 6.5.2). The training sets contain 2/3 of the data instances while the testing
sets contain the remaining 1/3 of the data instances.

> dataX <- data[,which(!colnames(data) %in% c("numBugs"))]
> dataY <- data[, which(colnames(data) %in% c("numBugs"))]
> dataY <- factor(ifelse(dataY > 0, "One", "Zero"))
>
> inTrain <- createDataPartition(dataY, times = 1, p = 2/3)
>
> trainX <- dataX[inTrain[[1]], ]
> trainY <- dataY[inTrain[[1]]]
> testX <- dataX[-inTrain[[1]], ]
> testY <- dataY[-inTrain[[1]]]

After execution, the variable trainX holds the explanatory variables of all training
instances while the variable trainY holds the corresponding dependent variables.
Respectively, testX and textY contain the explanatory and dependent variables of
all testing instances.

6.7.4 Step 4: Prepare the Data

It is always a good idea to remove explanatory variables that will not contribute to
the final prediction model. There are two cases in which an explanatory variable will
not contribute to the model.

1. If the variable values across all instances have zero variance (can be considered
a constant)—the function call nearZeroVar(trainX) returns the array of
columns whose values show no significant variance:

> train.nzv <- nearZeroVar(trainX)
> if (length(train.nzv) > 0) {
+ trainX <- trainX[, -train.nzv]
+ testX <- testX[, -train.nzv]
+ }

2. If the variable is correlated with other variables and thus does not add any new
information—the function findCorrelation searches through the correlation
matrix trainX and returns a set of columns that should be removed in order
to reduce pair-wise correlations above the provided absolute correlation cutoff
(here, 0.9):

> trainX.corr <- cor(trainX)
> trainX.highcorr <- findCorrelation(trainX.corr, 0.9)
> if (length(trainX.highcorr) > 0) {
+ trainX <- trainX[, -trainX.highcorr]
+ testX <- testX[, -trainX.highcorr]
+ }
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Rescale the training data using the center to minimize the effect of large values
on the prediction model by scaling the data values into the value range [0,1].
To further reduce the number of explanatory variables, you may also perform a
principal component analysis—a procedure to determine the minimum number
of metrics that will account for the maximum variance in the data. The function
preProcess estimates the required parameters for each operation and predict

.preProcess is used to apply them to specific datasets:

> xTrans <- preProcess(trainX, method = c("center", "scale"))
> trainX <- predict(xTrans, trainX)
> testX <- predict(xTrans, testX)

6.7.5 Step 5: Train the Models

This script will use several prediction models for the experiments: Support vector
machine with radial kernel (svmRadial), logistic regression (multinorm), recursive
partitioning (rpart), k-nearest neighbor (knn), tree bagging (treebag), random
forest (rf), and naive Bayesian classifier (nb). For a fuller understanding of these
models, we advise the reader to refer to specialized machine-learning texts such as
Menzies [43] (Chap. 3) or Witten et al. [65].
> models <- c("svmRadial","multinom","rpart","knn","treebag",
+ "rf","nb")

Each model is optimized by the caret package by training models using different
parameters (please see the caret manual for more details). “The performance of
held-out samples is calculated and the mean and standard deviations is summarized
for each combination. The parameter combination with the optimal re-sampling
statistic is chosen as the final model and the entire training set is used to fit a final
model” [36]. The level of performed optimization can be set using the tuneLength
parameter. We set this number to five:

> train.control <- trainControl(number=2)
> tuneLengthValue <- 5

Using the train() function, we generate prediction models (called fit) and store
these models in the list modelsFit to later access them to compute the prediction
performance measures precision, recall, and accuracy:

> modelsFit <- list()
+
+ for(model in models){
+ print(paste("training",model," ..."))
+ fit <- train(trainX, trainY, method = model,
+ tuneLength = tuneLengthValue, trControl = train.control,
+ metric = "Kappa")
+ modelsFit[[model]] <- fit
+ }

http://cran.r-project.org/web/packages/caret/caret.pdf
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6.7.6 Step 6: Make the Prediction

Using the function extractPrediction() we let all models predict the dependent
variables of the testing set testX:

> pred.values <- extractPrediction(modelsFit, testX, testY)
> pred.values <- subset(pred.values, dataType == "Test")
> pred.values.split <- split(pred.values, pred.values$object)

After execution, the variable pred.values.split holds both the real and the
predicted dependent variable values. To check the predicted values for any of the
used models (e.g., svmRadial), we can access the variable pred.values.split

as shown in the following text. The result is a list of observed (obs column) and
predicted (pred column) values for each instance in the testing dataset. The result
depends on the random split and thus may vary between individual experiments.

> pred.values.split$svmRadial
obs pred model dataType object

179 One Zero svmRadial Test svmRadial
180 Zero Zero svmRadial Test svmRadial
181 Zero Zero svmRadial Test svmRadial
182 Zero Zero svmRadial Test svmRadial
183 Zero Zero svmRadial Test svmRadial
184 Zero Zero svmRadial Test svmRadial
185 One Zero svmRadial Test svmRadial
186 One One svmRadial Test svmRadial
187 One One svmRadial Test svmRadial
188 Zero One svmRadial Test svmRadial
189 One One svmRadial Test svmRadial
190 One Zero svmRadial Test svmRadial
191 One One svmRadial Test svmRadial
192 One Zero svmRadial Test svmRadial
193 Zero Zero svmRadial Test svmRadial

6.7.7 Step 7: Compute Precision, Recall, and F-measure

The final part of the script computes precision, recall, and F-measure values for all
models and stores these accuracy measures in a table-like data structure:

> getPrecision <- function(x) as.numeric(unname(x$byClass[3]))
> getRecall <- function(x) as.numeric(unname(x$byClass[1]))
> getFmeasure <- function(x, y) 2 * ((x * y)/(x + y))
>
> n.row = length(pred.values.split)
> results <- NULL
> results <- dataFrame(
+ colClasses = c(Model = "character", Precision = "double",

Recall = "double", F.Measure = "double"), nrow = n.row)
> for (j in 1:length(pred.values.split)) {
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+ conf.matrix <- confusionMatrix(pred.values.split[[j]]$pred,
+ pred.values.split[[j]]$obs, positive = "One")
+
+ precision <- getPrecision(conf.matrix)
+ if(is.na(precision)){ precision <- 0 }
+
+ recall <- getRecall(conf.matrix)
+ if(is.na(recall)){ recall <- 0 }
+
+ f.measure <- getFmeasure(precision, recall)
+ if(is.na(f.measure)){ f.measure <- 0+ }
+
+ results[j, 1] <- names(pred.values.split)[j]
+ results[j, 2:4] <- c(precision, recall, f.measure)
+ }

To print the prediction measures, we simply print the results table. That will
print a table containing precision, recall, and F-measure values sorted by a machine-
learning algorithm used for training and testing.

> print(results)
Model Precision Recall F.Measure

1 knn 0.6562500 0.5833333 0.6176471
2 multinom 0.7096774 0.6111111 0.6567164
3 nb 0.6571429 0.6388889 0.6478873
4 rf 0.7575758 0.6944444 0.7246377
5 rpart 0.5526316 0.5833333 0.5675676
6 svmRadial 0.7307692 0.5277778 0.6129032
7 treebag 0.8181818 0.7500000 0.7826087

The results show that using a tree bag model, we obtain a precision of 0.82, a
recall of 0.75, and an F-measure of 0.78. The high precision value of 0.82 means
that the tree bag model on average reports 18 % false positives—classifies code
entities as having a bug although no bug was found. Similarly, the recall value
of 0.75 implies that the model contains about 25 % false negatives—code entities
classified as bug free but in which bugs have been fixed. Comparing this result with
the overall defect prediction model accuracy measures on Windows Vista presented
in Table 6.3 shows that the just-built classification model has comparable results to
state-of-the-art defect prediction models (although trained and tested on a different
project, using different metrics, and different granularity).

Ready-made scripts are available that predict and recommend future bugs.

6.8 Conclusion

To err is human, but to learn from the past is human too. Mining issue repositories
offer several opportunities to automate this learning process, producing recom-
mendations that can help identify present bugs and avoid future bugs. Bug data



www.manaraa.com

6 Mining Bug Data 167

is not without caveats, though. First, the data reflects specific users, tools, and
processes, which should be identified to ensure proper interpretation of the results.
Second, the data itself is frequently noisy or biased, which should also be taken
into account, and where possible, reduced or eliminated. A bit of manual inspection
and cross-checking can tremendously increase confidence in all automatic findings,
and the future belongs to those who integrate automated tools into well-defined and
systematic empirical investigations.

The central challenge of the future will be to combine both automatic and manual
empirical bug analysis.
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Chapter 7
Collecting and Processing Interaction Data
for Recommendation Systems

Walid Maalej, Thomas Fritz, and Romain Robbes

Abstract Traditional recommendation systems in software engineering (RSSE)
analyze artifacts stored in large repositories to create relevant recommendations.
More recently, researchers have started exploring interaction data as a new source
of information—moving closer to the creation and usage of the artifacts rather
than just looking at the outcome. In software engineering, interaction data refers
to the data that captures and describes the interactions of developers with artifacts
using tools. For instance, the interactions might be the edits or selections that
affect specific source code entities or webpages (artifacts) using an integrated
development environment or a web browser (tools). Interaction data allows to better
investigate developers’ behaviors, their intentions, their information needs, and
problems encountered, providing new possibilities for precise recommendations.
While various recommendation systems that use interaction data have been pro-
posed, there is a variety in the data being collected, the way the data is collected,
and how the data is being processed and used. In this chapter, we survey and
summarize the major approaches for RSSEs that create recommendations based on
interaction data. Along with this, we propose a conceptual framework for collecting
and processing interaction data for the purpose of recommendation.
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7.1 Introduction

Online retailers such as amazon.com or booking.com use data on how their users
interact with the websites to automatically recommend potentially interesting items.
A common scenario is “other users who looked at these products considered buying
these products too. . . ” Similarly, search portals aggregate the web navigation history
into a user profile to improve the relevance of search results [7].

Software engineering researchers also started looking into using developers’
interaction data to make a variety of recommendations. The idea is that single
interactions such as document selections, code changes, command executions, or
web searches allow for a better understanding of a developer’s work and thus for
more fine-grained and precise recommendations. Conventional software repositories
such as version control systems provide only aggregated, high-level information on
a developer’s work.

For example, a developer might work all day to fix a bug. While the version
control system only stores the few code changes committed at the end of the day,
the developer did a lot more than just perform the committed changes. For instance,
the developer might have used the debugger to reproduce the bug, navigated through
other parts of the code, read documentation, run tests, or performed web searches
to get help. A more fine-grained tracking of interaction data can be used to reflect
the problems encountered by the developers and eventually recommend relevant
documents, actions, people, or even pieces of code.

The ability to monitor almost every single interaction of a developer with modern
tools, in particular within the integrated development environment (IDE), provides
new and manifold opportunities for recommendation systems. Many recommenda-
tion systems in software engineering (RSSEs) that use interaction data have been
proposed. For instance, Mylyn [13] tracks the selections and edits of source code
artifacts to filter most relevant artifacts for the current task. Other systems use the
interaction data to suggest reusable pieces of code [33], predict defects [16], raise
awareness amongst developers [6], or prevent conflicts in teams [15].

These recommendation systems vary mainly along the types of interaction data
gathered, the artifacts concerned by the interaction, as well as how the interaction
history is collected, aggregated, and used to recommend information of interest.
In this chapter, we describe the general principles for collecting and processing
interaction data for the purpose of recommendation. Along with this, we survey
and summarize major approaches for RSSE that are based on interaction data.

The remainder of this chapter is structured as follows. Section 7.2 presents
three tools that use interaction data in order to support developers in their daily
work. Section 7.3 defines interaction data, its main concepts, and granularity
levels. Section 7.4 proposes a general framework for creating interaction data
collection tools. Section 7.5 summarizes the main approaches to process interaction
data, including the sessionization, filtering, and aggregation of interaction events.
Section 7.6 discusses the main usage scenarios addressed by RSSEs that use
interaction data: productivity and awareness. Finally, Sect. 7.7 presents the main
challenges in the field and sketches future research directions.
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7.2 Examples

After summarizing early foundational work, we present three tools that use interac-
tion data to support developers in their work: Mylyn, Switch, and OCompletion.

7.2.1 Early Work

Many recommendation systems that collect and use interaction data are based
on early work from the human–computer interaction community. Hill et al. [12]
monitored edits, selections, and scrolls to compute “edit wear” and “read wear”
metrics of documents. Edit wear measures how often a given line in a document
was edited, while the read wear measures how often it was read. The idea was
derived from the wear in physical objects, which gets visible due to interactions
with the objects. Similarly, the edit and read wear are shown in the scroll bar of
the document, allowing to spot which parts of the document were changed and read
most frequently. Wexelblat and Maes [39] presented a tool for tracking interactions
with web documents to support navigation. The goal was to capture and reuse
navigation patterns of webpages to make new web investigations on similar topics
more efficient. The collected information can be displayed as a map of webpages,
showing how often a page was visited.

In the software engineering community, DeLine et al. [3] proposed TeamTracks,
a tool that reuses the read wear metaphor to filter the list of artifacts displayed in
the IDE. The tool monitors the previous transitions between source code files to
recommend related files when a file is browsed. Evaluation studies showed that
the tool helped developers in program comprehension tasks. The tool also helped
experienced developers, working on large systems, to remember related artifacts
to the one they are currently browsing. Singer et al. [38] proposed a similar tool,
which recommends files to developers during maintenance tasks. The assumption is
that files involved in short navigation cycles are related. A repository of association
rules is built based on the observed cycles and is mined thereafter to recommend
files related to those currently being browsed.

7.2.2 Mylyn

Mylyn is one of the most popular software productivity tools that uses interaction
data. Mylyn is a plugin for the Eclipse IDE that allows users to focus only on the
code elements that are relevant for their current tasks. For this Mylyn maintains for
each task a “task context,” which consists of the interaction data for that task. Based
on this interaction data, Mylyn calculates a degree of interest (DOI) value for each
code element [13]. This value represents the interest of a developer in the element
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Fig. 7.1 Mylyn uses interaction data to recommend source code artifacts relevant for the current
task

for the given task. Whenever a developer selects or edits an element in the IDE,
the element’s DOI value increases accordingly. At the same time, the DOI values of
other elements decrease over time since interaction with them lies further back in the
past. This recency aspect of DOI allows for the model to adapt to changing interest.
Mylyn uses these DOI values to determine, filter, and highlight the most relevant
code elements for a task at hand to counteract the information overload developers
face in their IDE with the thousands of code elements that are usually displayed for
a single project. When using Mylyn, only the elements with a DOI value exceeding
a certain threshold are shown in the IDE (see Fig. 7.1).

7.2.3 OCompletion

OCompletion [33] improves code completion tools based on a fine-grained analysis
of previous edit interactions. When a developer is typing the beginning of a long
method name, code completion tools generate suggestions to help the developer
complete the name, making it easier and faster to complete the method name,
and avoiding spelling mistakes. In many cases, however, the list of suggestions is
long and ordered alphabetically, making it time consuming for the developer to go
through the list and find the relevant suggestion.

OCompletion addresses this issue by analyzing the changes made during the
development session. It prioritizes the suggestions based on the recency of fine-
grained interactions a developer previously had with the code. This approach makes
it possible to have a short and accurate list of relevant suggestions instead of long
lists (see Fig. 7.2).
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Fig. 7.2 OCompletion uses interaction data to recommend code completions

Fig. 7.3 Switch! uses interaction data to recommend the artifact needed next

7.2.4 Switch!

Developers work with a variety of tools and artifacts, not just the IDE or artifacts
within the IDE. For instance, developers frequently consult API documentation
on the web, communicate with other developers via email or chat, and use
specifications, diagrams, and plans best viewed and changed with specific tools.
Often there are dependencies between the various artifacts that require the developer
to switch back and forth between the artifacts to complete a given task.

Switch! [23] is a recommendation system that automatically infers these depen-
dencies based on the sequence of interaction events and the types of artifacts. Unlike
Mylyn and OCompletion, Switch! gathers the interactions a developer has with all
tools in an operating system. Switch! uses the interaction data to create a reactive
graphical interface (see Fig. 7.3) that allows developers to quickly switch to the
artifacts that they will most probably need next.
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Fig. 7.4 The main concepts of interaction data

7.3 What Is Interaction Data?

Interaction data refers to a record of the actions taken by a user (in our case a
software developer) with a tool. These actions are usually performed in a context,
such as a specific task. Interaction data typically involves four types of data:
interactions, artifacts, tools, and contexts, as illustrated in Fig. 7.4.

Interactions. The actions (i.e., the interaction events) taken by a developer, such
as the clicks of specific buttons, the changes to code entities, or the views of
documentation pages.

Artifacts. The entities a developer is interacting with, such as a source code entity,
an issue report, an email document, or even physical artifacts and people.

Tools. The software application developers use during their work, such as the IDE,
the browser, the issue tracking system, or the email client.

Contexts. The circumstances in which the developer is performing an interaction,
such as the task a developer is working on or the issue being encountered.

7.3.1 Interactions

Interaction data is typically recorded as a stream of interactions or interaction events.
Each interaction event denotes a single interaction a developer performs on an
artifact using a tool. For example, a developer might open a source code entity
using an editor, run a specific test case within a testing tool, edit a requirement
using a text editor, or change a release plan using an issue management system. For
this chapter, we focus on interactions that are observable on a developer’s computer.
However, a more general definition could capture any interaction a developer has
with any virtual or physical artifact, including calling a customer over the phone,
taking notes on a piece of paper, or drawing a model on a whiteboard.

In the following, we introduce common types of interaction events. This list is
by no means exhaustive. It is rather open-ended and only intends to give an idea of
the possibilities.
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Select. A select interaction refers to the explicit selection of an artifact by a
developer, such as selecting a specific class in the IDE, a particular issue report
in the issue management system, or a particular tab in the web browser.

Edit. An edit refers to the creation, removal, or modification of an artifact by a
developer. While on a fine granular level each individual keystroke might be
recorded as a separate event, on a higher granular level, an edit event might
represent the whole modification (e.g., to a source code element, a part of a
document, or a package).

Read. A read interaction represents the developer acquiring the information in an
artifact. This typically involves selecting the artifact and scrolling its content.

Open and Close. An open or a close event refers to the explicit opening or closing
of an artifact, such as opening a file from disk, the attachment of an email, or
accessing a website. Open and close can also concern a tool such as opening the
email client or the web browser.

Reference. A reference event represents the indirect usage of a specific artifact, for
example, through importing a library or calling a method in a source code.

IDE Command. IDEs offer a variety of commands to the users, each with a
specific semantic and functionality. A command interaction refers to a developer
executing one of these commands in the IDE. The exact set of possible
commands depends on the specific IDE used and its plugins. Commands are
typically grouped into user interface menus, including the following:

Debugging. A debugging command refers to specific debug actions, such as “set
breakpoint,” “step over,” “inspect,” “change variable,” etc.
Versioning. These refer to specific commands in the versioning system, for
example, “checkin,” “checkout,” “synchronize,” etc.
Issue tracking. These refer to commands in the issue-tracking system such as
“create a bug report,” “close a bug report,” “add a comment,” etc.
Refactoring. These commands include common refactoring operations such as
“rename,” “move method,” “extract method,” etc.
Testing. These commands refer to the running and managing of test cases.

Text Input. A text input event refers to a user entering text into a specific field
to perform a command. Examples are web searches, IDE searches, or rename
commands. These interactions have a different semantic than edit events and are
therefore often treated differently.

Use. This is a general type of interaction, which might, for example, concern tools
or applications, such as using a debugger, or using an email client.

Other. Finally, there are commands specific to applications other than an IDE, such
as starting a chat session, sending an email, or playing a video file. These are
similar to the IDE commands in the sense that they are an open set of actions that
may vary from user to user, from platform to platform, and even from application
version to application version.
Interaction events depict a certain interest of a developer in the concerned artifact.

Depending on the type, an event might indicate a different degree of interest in the
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artifact. For example, an edit event might indicate a higher interest in a source code
method than a selection of the same method [14].

7.3.2 Artifacts

Developer interactions affect various types of artifacts. The artifacts range from
source code entities (such as classes and methods), to models, documentation pages,
and emails. Artifacts vary in their level of granularity. For instance, a developer
might open a whole class file in a code editor, then select a single method therein,
then change one call to another method, and then interact with a code navigation
tool to navigate to the called method.

One of the most common types of artifacts used in RSSEs are source code
artifacts, that is, the entities that a software system is composed of. Recorded
artifacts may range from packages or binaries at a higher-level, down to files,
classes, modules, methods, procedures, attributes, variables, and even individual
expressions or statements, depending on the purpose of recommendations. For
instance, while Mylyn stops at the method and variable level, OCompletion
distinguishes interaction events at the code statement level.

In addition to source code entities, recommendation systems might also monitor
developer interactions with other project artifacts, such as bug reports, test cases,
documentation, build and configuration files, models of the system, and requirement
specifications. More and more websites are also considered as very important
artifacts in software development and the interaction with them reveal information
about the developers’ interests, their intent, or their problems encountered. These
websites range from online API documentation, over question and answer websites,
such as StackOverflow, to the results of web or code searches. From the perspective
of developers, we can distinguish between two types of artifacts: documents that
can be read and edited by the people (such as text documents, images, or videos)
and binaries that can be executed or used.

7.3.3 Tools

Tools are the software applications developers interact with to perform their work.
These tools might run as a separate process in the operating system or as a specific
plugin in the IDE, such as plugins for source code analysis, for version control
systems, or bug-tracking systems. Tools might also be remote applications, which
are accessed, for example, via a web browser or a console. An example of such a
remote tool is the Bugzilla issue-tracking system, which is typically used through
the web browser. External tools that are often outside of the IDE but still important
to a developer’s work include web browsers, email clients, instant messaging,
video-conferencing platforms, design tools, or requirement tools.
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Typically, a specific artifact type is accessed and maintained by a specific tool
type [17]. For example, editors and debuggers are used to manipulate source code.
Diagramming and visualization tools are used to create and maintain models.
Issue-tracking systems are used to gather and process issue reports. Finally, email
clients and chat programs are used to share information and coordinate work.
Some recommendation systems collect interaction data from a single tool. A more
sophisticated recommendation system should take into account the variety of tools
that developers use.

7.3.4 Context

Context is a loosely defined term and can refer to manifold concepts, such as
artifacts related to the one the developer is interacting with all the way to the mood of
the developer. We define the context of a developer’s interaction as to the conditions
or circumstances in which the developer interacts with an artifact. Context allows
to better understand why certain interactions happened. For instance, a text input
interaction might be part of a refactoring command, which might be part of a task
to clean up the code.

For any interaction there is some context, for example, the preceding interactions
that are relevant for the current interaction or some more abstract goal or intention
of the developer. This context can be used to interpret developers’ interactions
and provide better recommendations. However, not all types of context are easily
observable. For instance, if a developer accidentally hits a keyboard button when
trying to catch a fly, the reason for the accidental edit would in most cases not be
recorded and thus relevant context will be missing.

The context of an interaction can be on multiple levels of granularity, such as
a developer’s interaction preceding the event, a higher-level activity, or the more
abstract task a developer is working on. Typically, higher-level context information
is interpreted by processing interaction data, as described in Sect. 7.5. Common
kinds of context that are of interest to recommendation systems are (a) the concrete
tasks or intentions the developer is having (e.g., fixing a specific bug) and (b) a
recurrent activity or situation in the developer’s work (e.g., encountering a problem
versus applying a solution).

Tasks and Intentions. In software engineering, a task is commonly defined as an
atomic and well-defined work assignment for a project participant or a team [2,14].
A task includes a description and an assignee; it typically includes a duration and
time frame. Tasks describe what developers should do. An example of a task is
“Task #123: implement the XML Export Feature” assigned to Alice or “Weekly
integration test for web server” assigned to Bob. Recommendation systems like
Mylyn [14] associate every interaction event with a specific task, which has been
previously activated by the developer (to express that this task is being worked on).
The interaction data associated to a task is called task context. It is used to provide
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recommendations tightened to that task—for example, the most relevant artifacts,
the related bug reports, or the people who should work on the task.

A significant amount of developers’ work is rather informal and thus not always
associated to specific predefined tasks. Maalej [17] previously found that about half
of developer interactions are not related to specific tasks. This kind of context is
called intention [18]. It refers to the mental state that underpins the user interactions
but is not necessarily stated explicitly, for example, “explore a new API,” “assist a
colleague,” or “fix the discovered but unreported bug.” There are several approaches
that aim at detecting and describing the intention of the user [e.g., 18,37]. However,
most of them are still exploratory and experimental.

Activities and Situations. Activities are coarser-grained types of interactions,
typically referring to a class or a set of interaction events. Examples of activities
include navigating, coding, testing, debugging, specifying, planning, documenting,
designing, amongst others. An activity typically includes more than one interaction
event and lasts for at least a few minutes. Activities are often part of a task. For
instance, in fixing a bug, developers might navigate through the code; once they
find the right code, they make changes to it and then test it. Activities can also be
more coarse-grained, for instance, if two tasks are about documenting two parts
of a user interface. Activities reveal a recurrent development situation with well-
defined semantics. They are interesting for recommendation systems to suggest
items typically relevant in such situations.

Other types of situations include the “phases” of a task or the “states” in a mental
model of the developer. For example, a typical change task includes an initiation
phase, a concept location phase, and an impact analysis phase [30]. Phases might
also be oriented toward a problem-solution cycle, such as locate cause, search
solution, and test solution [34]. The better these concepts can be automatically
inferred from a developer’s interaction, the more precise the recommendations based
on interaction data might become and the broader the approaches might become.

7.3.5 Interaction Granularity

Interaction data might include various levels of abstractions, often called granularity
levels or granularity spectrum [35]. For instance, to perform a refactoring, a
developer might have to enter text or edit and select parts of the code in between. In
this case, the refactoring event represents a higher-level of granularity than the edit
and select events.

All types of interaction data including interaction events, artifacts, tools, and
contexts present different levels of granularity. For instance, an interaction event
might be a step-in or a debugging event. An artifact involved in the interaction might
be a package, a class, a method, a section, or even a single line in a document. A
tool might be the whole IDE such as Eclipse or a single plugin in the IDE. Finally,
a context might be the task activated by the developer, a certain release, or the
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current project phase. Typically, interaction data with a low level of granularity
can be collected programmatically, while interaction data with a higher level of
granularity needs to be inferred by processing the low-level data. One way to more
formally describe the granularity levels of interaction data is to use ontologies
[e.g., 21].

From the perspective of a developer, interactions with input devices such as
mouse clicks and keystrokes represent the lowest level of granularity. An interaction
with a single widget of the user interface, such as entering text in a text field or
clicking a button, represents a higher level of granularity. A single widget interaction
consists of multiple interactions with the hardware periphery such as multiple key
presses on the keyboard to enter text in a text field. More precise information about
the interaction can be derived at the widget level, since clicked widgets typically
are associated with a name and a given purpose. For example, a mouse click can
now be identified as pressing a button to create a project or the selection of a
window part. The next level of granularity is an aggregation of several single widget
interactions, for example, creation of a new project using an IDE wizard. Finally,
several single-widget or multiple-widget interactions can represent a user activity
such as refactoring the code, which in turn is a step of a task.

7.4 Collecting Interaction Data

Researchers and tool vendors have proposed several approaches to collect develop-
ers’ interaction data, including the following:

• Eclipse usage data collector [http://www.eclipse.org/epp/usagedata/]
• Mylyn monitor [14]
• SpyWare, to record fine-grained code changes [32]
• Teamweaver, to record interactions with tools inside and outside the IDE [19]

In the following, we discuss the general procedure underlying these approaches.
While different recommendation systems require different types and granularity
levels on developers’ interactions, they are generally all comprised of three parts:
a monitor with a set of listeners (also called sensors), a component to generate
interaction events, and a component to log these events and enable their processing.
Figure 7.5 shows the general procedure for collecting interaction data.

7.4.1 Monitoring Developers’ Interactions

The monitoring component varies depending on the tools, the artifacts, and the
interactions that should be collected. While some approaches might, for example,
only monitor coarse-grained IDE actions, others monitor every single keystroke.
In general, the monitoring component manages several listeners, which are also

http://www.eclipse.org/epp/usagedata/
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Fig. 7.5 Main components for collecting interaction data with a simplified flow

called sensors [19]. These sensors instrument the work environment, such as the
tool, the IDE, or the operating system where the relevant events are triggered.
The sensors continuously monitor their targets and whenever a new and relevant
interaction happens, they collect the necessary information such as the name of
artifacts concerned, its type, or the duration of the interaction.

The implementation of the sensors is often specific to the type and the technology
of the tool being instrumented. For example, sensors might operate on the operating
systems or the virtual machines level. These offer interfaces to listen to particular
types of events such as opening a file with a tool. The Microsoft Windows operating
system, for example, provides hooks, while OS X offers an Apple Script interface
to implement such functionality. Also the Java virtual machine and the Eclipse
runtime environment provide libraries to observe the interactions with the user
interface elements. In addition, program-monitoring and tracing frameworks (such
as DTrace or SystemTap) are deeply integrated into the operating system and
execution environments with the purpose of tracing program execution that can
provide further information on interactions. Sensors might also operate on the
application level. This is particularly convenient if the application provides means
for installing the sensors as plugins. Sensors should generally provide an interface
to install/uninstall and active/deactivate them. This allow the users to have the full
control and reduces the privacy concerns for collecting interaction data.

7.4.2 Generating Interaction Events

Once the sensor has captured an interaction, it generates an interaction event. Most
commonly, an interaction event is composed of the following information:

• Type of event, for example, a select event or an edit event
• Timestamp denoting when the event occurred
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<pre:e1 rdf:type interaction:JavaElementChange />
<pre:e1 interaction:hasTimeStamp 1222002002 />
<pre:e1 interaction:hasDuration 200 />
<pre:e1 interaction:concerns pre:java?name=myMethod />
<pre:java?name=myMethod rdf:type artefact:Method />
<pre:java?name=myMethod artefact:partOf pre:java?name=myProject.

myClass />

Fig. 7.6 Example of an XML representation of interaction data

• Duration or end time of the event
• Artifact concerned by the interaction, for example, setName() or “Issue #234”
• Type of artifact concerned by the interaction, for example, a method or a bug

report
• Tool used to perform this interaction

An example of an XML representation of interaction data is shown in Fig. 7.6.
In addition, the generated event might contain information on the context, such as
the task of which the event is a part. All of this information is gathered by the
component and aggregated in a newly generated interaction event.

7.4.3 Logging Interaction Data

The final component is a logger that persists the generated interaction events.
Different approaches use different techniques for the logging with respect to
compression and the segmentation of the data. Mylyn, for instance, collects a set
of interaction events and compresses them by collapsing similar events into one.
This approach minimizes the use of disk space and write operations. However, it
makes it difficult to recover the exact sequence of interaction events (see Sect. 7.5.4).
In addition, Mylyn logs the interaction data related to the task a developer is
working on in a so-called task context. Task contexts then provide a means to easily
recover all interactions for a specific task. Other approaches log interaction events
sequentially into a file without compressing or segmenting it in any particular way.
Additional processing steps applied to the log file later can then also help to recover
task boundaries (see Sect. 7.5.1).

The logging component might be on the developer’s machine [14] or on a
server [28]. Typically, the interaction logger provides additional functionality such
as the obfuscation of the data to reduce the risks of misusing it or the archiving of the
data to reduce its size. Evaluations have shown that, for a tool like Mylyn, the size
of a log file for the interaction data of a full workday typically includes 1–10 MB of
data [14].
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7.5 Processing Interaction Data

Interaction data in its raw form is usually not what is needed. For recommendation
purposes, further processing of the collected data is often necessary. We discuss
common data-processing approaches and summarize pitfalls that should be avoided
when processing interaction data. Processing interaction data is an active research
field. Other approaches might emerge in the future.

7.5.1 Sessionization of Interaction Events

The raw interaction data is typically in the form of a stream of events, which might
need to be split into individual sessions. We call this process sessionization of
events. Ideally, the developers will explicitly define the start and end of a session,
for example, to indicate what task they are working on. For example, Mylyn users
can sessionize their work by explicitly activating and deactivating a specific task
from the task list. However, since developers typically work on different tasks in
parallel and frequently change their focus back and forth [29], they might not be
willing to invest extra effort to indicate when they start and finish a specific work,
or might simply forget to do this. The problem of sessionization is also present
in conventional repository mining. It has been shown that developers occasionally
perform several tasks in one commit, as discussed by Herzig and Zeller [11] in
Chap. 6.

To identify sessions retrospectively, there are several approaches or heuristics
that might be considered:

• Several empirical studies have shown that work sessions with a particular goal in
mind typically last between 30 and 90 min [20].

• Period of sustained inactivity, that is, consecutive events that are separated by
large amounts of time, can be used to split the stream of events into sessions.
The threshold of 1 h has shown good results, that is, less than a lunch break or a
meeting, but more than a coffee break.

• Shorter interruptions can be detected as well, and processed accordingly. The
process is similar, only the threshold retained is lower (e.g., 5 min).

• Specific events represent strong indicators for switching the work session, such
as a committing event, starting a new tool, or viewing the task list or the issue-
management system.

• Individual work sessions can be focused on one task or be composed of several
tasks. Several sessionization algorithms defined in the literature are based on time
information and the artifacts that constitute the task [e.g., 29, 37, 41].

• Some tasks are too large to be finished in one development session. In this case,
sessions that involve related artifacts may be linked together, forming a “macro-
session” if the entities in common between both sessions are above a certain
threshold.
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7.5.2 Filtering of Events

Depending on the goal of the recommendation system, some events might be
undesirable and considered as noise. These events must be detected and removed.
Examples of these events include the following:

• “Transient changes” are changes that do not survive a development session, for
instance, when a developer inserts debugging statements in the code in order to
find a bug and removes them once the bug is fixed. Other examples are errors in
the code (incorrect method calls) that are corrected later in the session. Transient
changes strongly depend on the usage scenario of the interaction data. These
events might be irrelevant in specific cases but relevant in other situations.

• Events that are not originating from the developer but rather from the tools that
the developer is using may need to be treated separately. For instance, changes
occurring from a refactoring tool do not represent developer interactions. Using
these changes to evaluate the performance of code completion algorithms would
misrepresent them. Changes performed by tools are performed much faster than
changes performed by developers, making it possible to mark them as such (e.g.,
a rename refactoring will change the name of a method, and update all references
to it in rapid succession, on the order of milliseconds).

• “Bulk events,” for example, events of type “selection,” may originate from
selections of many artifacts in the IDE. If the developer selects all the classes
in a given package, they may be marked as individually selected, yielding a very
large number of selection events in a short time.

Filtering is performed when the spurious events are deemed to be irrelevant for the
task at hand. In that case, events are simply removed from the stream of events.

7.5.3 Aggregation of Events and Inference of Context
Information

Recommendation systems in software engineering might also aggregate interaction
events to infer a higher level of granularity (see Sect. 7.3.5). A typical purpose is to
infer the current task or situation of the developer from the low-level interaction
events. We distinguish between three major aggregation approaches: semantic
approaches, heuristic-based approaches, and probabilistic approaches (i.e., using
machine learning).

Semantic approaches use a type hierarchy (i.e., a specific taxonomy) to aggregate
interactions or artifacts to a higher-level type in the hierarchy [19, 23]. For
instance, observed “step-in” and “step-out” events have “debugging” as the common
higher-level type and can thus be aggregated into a more general debugging
interaction. Similarly, a “method” and a “class” are subtypes of the higher-level
type “code.” The two events “edit the method X” and “edit the class Y” can be
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aggregated to “edit the code X and Y.” The interaction and artifact taxonomies might
also define cross-relationships to allow for reasoning. For example, the interaction
type “implement” might be associated with the artifact type “method,” whereas
the type “specify” is associated with the artifact type “class.” From observing an
“implement” event that concerns an artifact of type “class,” we can infer that the
event is of type “specify.” The main disadvantage of taxonomy-based approaches is
the maintenance of the taxonomy, which is difficult and time consuming. Moreover,
interaction types can have multiple higher-level types (i.e., multiple inheritance).
It is thus nontrivial to navigate the taxonomy up and down to select the right type.

Similar semantic approaches without taxonomies aggregate interactions concern-
ing the same artifact or the artifacts concerned by the same type of interaction. For
instance, in Mylyn multiple events concerning the same code entity are sometimes
represented as an aggregated event with a start date, an end date, and a number of
events (i.e., the total number of events between the first and the last, both included).
Similarly, the events originating from the clicks on items of the same menu (e.g.,
view, edit, or debug) can also be aggregated to an event describing that menu.
Finally, all edit events that concern methods of the same class can be aggregated
to an edit of that class.

Heuristic-based approaches typically use assumptions and metrics to aggregate
events and infer context. For instance, the DOI model underlying Mylyn aggregates
all the events concerning an artifact and compute an interest value that is updated
over time based on the recency of the interaction [14]. Similarly, the defect
prediction approach of Lee et al. [16] computes a variety of metrics over session
data, aggregating interactions in one development session. These metrics then
serve as input to a metric-based defect prediction model. Likewise, the Robbes
and Lanza [31] classification of development sessions to one of five categories is
based on metrics. Finally, Ying and Robillard [40] suggest to use the interaction
style (i.e., the distribution over time) of the edit events to determine whether
the developer is working on an enhancement task, minor, or major bugs fixes.
Development sessions consisting of Edit-Last events are most likely enhancement
tasks. Edit-First interaction style is most likely an indicator for minor bug fixes
while Edit-Throughout is an indicator for major bug fixes. In general, the duration,
the recency, the type, and the frequency of interaction events can reveal “important”
context. Heuristics based on these features can be used to label sets of events in a
developer session.

Finally, probabilistic approaches might use data mining and machine-learning
algorithms (such as those introduced in Chap. 3 [26]) to aggregate interaction
data. Generally, these approaches try to identify in the interaction history recurrent
patterns, which characterize specific situations. When these patterns are observed in
future interaction data, the system predicts the situation with a certain probability.
For example, RSSEs might define the set of development situations to be inferred.
In a training phase, the system learns the probability to move between two situations
when certain interaction events occur. This can be, for example, to move from a
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testing to a debugging situation when a “read error message” event occurs. Later,
the RSSE infers the current situation based on the observed events. Roehm and
Maalej [34] suggested a similar approach using a hidden Markov model. Other
machine-learning approaches such as time series analysis, or frequent itemset
mining might also be used.

7.5.4 Pitfalls When Processing Interaction Data

Processing the interaction data can make it more useful to the recommendation task
at hand, but certain pitfalls have to be kept in mind:

Over-processing. Each processing step may introduce noise. Algorithms detect-
ing patterns in the data rarely have perfect precision and recall, especially
algorithms that rely on thresholds: slight changes to the threshold return different
results for borderline cases. Therefore, composing processing steps can poten-
tially compound the inherent imprecisions of each algorithm. We recommend
double-checking the results with care and if possible using a semi-automatic
approach that corrects wrong processing results.

Destructive Operations. When aggregating events, we recommend keeping the
original data intact as much as possible, as it is hard to predict what information
will be needed. When the Spyware tool detects a refactoring operation, it creates
an aggregated refactoring event, but keeps the actual changes as a part of this
event in case a future RSSE need consult this data. Mylyn’s aggregation of events
loses detail on the specific interactions so that only the start and end time of a
sequence of interaction is known, but the timestamps of intermediate events is
removed. This makes it difficult for other approaches that need a full sequential
list of interaction events to use the Mylyn monitor. As a workaround, Ying and
Robillard [40] assumed that the intermediate events were equally distributed
between the first and the last timestamp.

Tool Limitations. Data recorded about what the developer is doing may still
be inaccurate. Each interaction data collection tool has issues that should be
known to avoid false interpretations (e.g., that a very large number of artifacts
are manually inspected by developers in a large amount of time). When using
existing monitoring tools, we recommend to carefully review the data produced
by the tool, in order to have a clear understanding of what kind of events are
producing what kind of data. If possible, the data should be preprocessed to
attenuate data quality issues.

Developer Inactivity. Developer inactivity is hard to assess, as it may simply be
due to missing interaction data. For instance, the IDE sensor may not register any
activity because the developer is browsing the web or because the developer is
carefully reading a visible piece of code on the screen. Treating these moments
as breaks in the work may introduce imprecisions.
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7.6 Using Interaction Data

In this section, we discuss scenarios where interaction data can be used to provide
recommendations to developers. We focus on approaches to increase developers’
productivity and to support awareness and collaboration amongst development
teams.

7.6.1 Productivity

Interaction data can be used to improve developers’ productivity. Current
approaches can be grouped into four main scenarios: (1) reducing information
overload and helping developers to focus, (2) recommending a particular piece
of information that is needed in the current task and that will help in satisfying
developers’ information needs, (3) suggesting a relevant source code, and
(4) predicting a particular project metric, such as the bug-proneness of a module.

Mylyn [14] aims to reduce information overload for developers by optimizing
the user interface of the Eclipse IDE (see Sect. 7.2). The core idea is that only a
subset of all code artifacts in large software projects is relevant for working on a
given task. Thus, Mylyn hides or blurs code artifacts that are less relevant. The tool
collects all interaction events that a developer performs while working on a task
and calculates a “DOI” value for each code element. This value reflects a certain
interest level of the developer in this code element. The DOI assumes that the more
frequent and more recent an element is interacted with, the more interesting it is
to the developer for the current task at hand. The DOI value is then interpreted to
visually indicate task-related files in the IDE. Kersten and Murphy [14] evaluated
the influence of Mylyn on the personal productivity of developers by calculating the
edit ratio of 16 subjects with and without using Mylyn. The edit ratio is the relative
amount of edit versus select interactions for a certain period of time. The authors
found that Mylyn significantly increased the edit ratios of their subjects, on average
by 50 %. Mylyn is already part of the most common distribution of the Eclipse IDE
and is being used by a large population of software developers.

Reverb [36] is a tool that recommends websites including relevant information
for developers based on the code they are currently editing. The tool assumes
that people often revisit the same websites and take into account two kinds of
interactions: a developer’s web browser history and the editor window the user is
currently interacting with in the IDE. Any website a developer visits for at least 5 s
is considered relevant and therefore indexed. When a developer interacts with the
Java code editor in the IDE, Reverb extracts the Abstract Syntax Tree elements from
the currently visible source code in the editor and queries the developer’s browser
history with these code elements. An evaluation showed that 51 % of code-related
revisits can be predicted by Reverb, which reduces the time developers need to find
and open the website needed. Murphy-Hill et al. [27] introduced a similar approach
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based on very fine grained interaction data for improving developers’ fluency by
recommending specific commands in the IDE that might save time and of which the
developer might not be aware of.

Since code completion tools are commonly used by developers, we can assume
that increasing their accuracy will increase the productivity of the developers.
Robbes and Lanza [33] evaluated using fine-grained change interactions to improve
the accuracy of code completion tools. The authors used a large data set including a
list of fine-grained changes performed by developers while working on tasks in their
IDE. From this data set, the insertions of method calls and class names are identified.
When detecting such an insertion, the code completion engine is simulated, as if the
developer was asking for a code completion. The code completion engine returns
an ordered list of recommendations for the completed identifier. The proposals of
the completion engine are compared with the actual identifier that is included in
the sequence of prerecorded changes. The authors found that the default algorithms
ordered their recommendations alphabetically, which yielded very poor accuracy.
Ordering the suggestions based on their usage recency gave much better results,
increasing the score fivefold.

Finally, Lee et al. [16] investigated developers’ interaction history for defect
prediction. Based on select and edit interaction events, they define 56 micro-
interaction patterns. In an experiment, they compared the predictive power for
regression and classification of these patterns against source code and history
metrics. The authors show that micro-interaction patterns can improve upon existing
defect prediction models based on source code or history metrics. For example, the
pattern “NumLowDOIEdit” representing the number of edit events with a low DOI
value, that is, editing a code element that one has not interacted with a lot before,
has the highest power to predict a defect.

7.6.2 Awareness and Collaboration

“Awareness is the understanding of the activities of others, which provides a context
for the own activity” [4]. Interaction data is being used to provide awareness
to developers, mainly answering questions such as “who is working on what.”
Approaches for awareness vary depending on the granularity of the interaction data
(from very fine-grained code edits to more coarse-grained file changes), the type of
artifacts the awareness is provided for (such as project code or work items), and the
kind of information visualizations being provided.

To provide team awareness and avoid conflicts, FastDash [1] visualizes where
people are interacting with files in a project. This approach collects two kinds of
data: (a) active file actions that are based on developers’ interactions with the Visual
Studio IDE, such as opening, editing, or debugging files, and (b) source repository
actions, such as which files are checked out by whom. The interaction data is
collected on a server and visualized in a dashboard, which presents the project files
in a tree map and annotates files with which developers are currently interacting.
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Seesoft [5] is a similar recommendation tool for creating awareness in software
projects. It colors each line of code in the IDE according to the recency of its last
change: the recently changed lines are colored in red, older lines in dark blue. The
interaction used in this approach is limited to the changes that people made to the
code in the source code repository.

More recently, Fritz et al. [6] suggested the Degree-of-knowledge model to
recommend expert developers for parts of the code. This approach uses authorship
and interaction data to characterize a developer’s knowledge of the source code. The
degree-of-knowledge model predicts for each code element a developer who should
know most about it. In addition, Fritz et al. showed how this model could be used to
recommend bug reports that might be of interest to a developer.

7.7 Challenges and Future Directions

The field of collecting and processing interaction data for the purpose of recommen-
dation is relatively new. Despite recent advances, there are scientific and technical
challenges as well as promising usage scenarios left for future research.

7.7.1 Challenges

Efficient, Integrated, Non-intrusive Instrumentation. The first step in imple-
menting recommendation systems that use interaction data is instrumenting the
work environments of developers and (in particular cases) end users. To this end,
a question about the efficiency and intrusiveness of data collection arise, that
is, how data can be collected without disturbing the user’s workflow. Moreover,
the integration of the context monitoring into heterogeneous tools and applications
poses an additional engineering challenge on how various workplaces (including
heterogeneous tools, information, and activities) can be instrumented and observed.
This leads to the question of whether such instrumentation can be systematically
integrated into (or offered by) underlying frameworks such as graphical user
interfaces, accessibility libraries, operating systems, middleware, and execution
environments.

Representation of Interaction Data. The usefulness of interaction data depends
on the specific scenario for which it is used. In some cases, fine-grained interaction
data and artifacts are needed. In other cases, higher-level interaction events and
context information are more useful. This makes the general modeling and rep-
resentation of interaction data for recommendation systems a difficult endeavor.

The representation of interaction data and its context has more complicated
requirements than the representation of simple logs, for example, a web server
traffic log. Interaction data should be represented efficiently and should allow for
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eventually unknown queries and processing. The following questions arise: How can
we represent interaction data to enable reasoning, semantic interpretation, and
querying? Which representations allow for a flexible and accurate comparison of
similar contexts? What should be observed and what not? What should be rather
processed?

Sessionization of Interaction Events. A central research issue for using inter-
action data in RSSEs and more generally building context aware systems is the
sessionization of the event stream (see Sect. 7.5). Sessionization is a complex
problem since people frequently switch their focus and intentions. Interruptions
and new thoughts lead to context overlaps. Sessionization packages interaction data
and context information that belongs together. The question is thus: How can we
precisely sessionize interaction data? How can a context switch be detected? How
can we automatically detect and classify users’ intentions to well-defined types, for
example, based on the meaning of interaction events (such as testing, debugging, or
releasing context)?

Context Prediction and Comparison. Raw interaction data includes a lot of noise
because of the large amount of potentially useful information that can be collected.
Interaction data should be processed and aggregated, its information ranked, and
new knowledge about the context derived out of it. The following questions arise:
How can we aggregate interaction data for different levels of granularity (different
situations require different levels of details)? How can short-term context such as
the current intention and long-term context such as the profile and preference of the
developers be predicted based on observed interaction? How can aggregated context
be compared and decomposed if more details are needed?

Privacy Protection. Recommendation systems based on interaction data collect
numerous, possibly sensitive information about the user. This raises privacy con-
cerns, since information can be abused, misinterpreted, or even sold for marketing
agencies. For example, the interaction data of a developer can be misused by
the employer to measure and compare the productivity of the developers. The
questions are: what are acceptable trade-offs for RSSE users? How can we protect
users’ privacy while collecting their sensitive information? How can we ensure
the principle minimality, that is, ensure to collect only the minimally required set
of information? The more difficult question is: how can we ensure that currently
anonymized interaction data will not reveal sensitive information in the future, for
example, if combined with other data about the user collected from different sources
(e.g., other RSSEs)?

7.7.2 Future Scenarios

Proactive Knowledge Capturing, Sharing, and Access. Interaction data includes
useful knowledge, for example, on how a problem has been solved by a
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developer [10]. If filtered and aggregated accurately, such data will represent
experience description, that can be populated in wikis or used to recommend
solution alternatives when similar problems are encountered. It is useful, for
example, to capture information on where developers looked for help while having
similar bugs, or what they did to fix it [9]. Similarly, reuse scenarios such as
component integration or API reuse require significant background knowledge [8].
In such scenarios, useful information includes how other developers proceeded in
the reuse, how they instantiated a particular API, where they looked for help, and
where they started. Such experiences are typically lost or scattered across private
documents.

Knowledge sharing can be made more precise and efficient by supporting the role
of knowledge producers [9]. Future recommendation systems can actively capture
the experiences of developers by observing interaction data and encouraging them
to share certain information with certain team members [10], for example, asking to
share a webpage that a developer extensively used to solve a certain problem.

Future recommendation systems can also automatically identify links between
artifacts, for example, source code, created and documentation useful to understand
it. For example, while implementing a change request, a developer might check the
issue tracker, read the customer’s email, browse a forum discussion, reuse a new
library, and change several pieces of source code. The ticket, the discussion, the
email, and the library can be linked and later traced to the changes and resulting
versions. Linking changes to their context enables developers to trace these changes
and understand them in the future [17]. These links simplify the information
retrieval based on available information (e.g., the customer’s email instead of the
version number).

User Involvement and Continuous Requirements Engineering. In modern prod-
uct development, the user feedback and the user acceptance of the product are
essential for market success [25]. Current requirement engineering practices are
characterized by a communication gap between users and developers [24]. The
context that underlies the user feedback is either gathered asynchronously or
submitted with the wrong level of detail.

Observing the interaction data of users can make user feedback a first order
concern in software engineering. Software systems would observe how their users
use certain features, their problem situations, their workplaces, and workflows. Such
information facilitates continuous, semi-automatic communication between users
and developers. Problems or bugs will be reproduced and understood faster, and
wrong requirements corrected and elaborated remotely. This increases the quality
of user input and the efficiency of requirements and maintenance processes. This
would also enable users to bring their innovations and become a “collaborator”
in the project [22], as their interaction data can be used to systematically evaluate
particular software features (e.g., in a new release), how they are used, and why they
are used in that way—promoting a deeper understanding of the user’s needs.
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7.8 Conclusion

In software engineering, interaction data captures the interaction of developers with
tools to perform specific work and includes information about the artifacts being
concerned by the interaction. Interaction data might also contain information about
the context in which the interaction occurred (e.g., the task at hand, the intention in
mind, or the problem being encountered). Current RSSEs using interaction data
focus on increasing developers’ productivity by, for instance, filtering irrelevant
information or predicting reusable code, as well as creating awareness by, for
instance, showing who is working on which artifact or recommending experts.

In this chapter, we discussed means to represent and collect interaction data for
recommendation systems. Collecting this data typically requires installing monitors
and sensors that listen to user interactions in the target applications and thereof
create a log of interaction events. Furthermore, we discussed some of the major
goals and challenges of processing interaction data, including the filtering of noise,
the aggregation of events, the sessionization of event steams, and the inference of
higher-level context. Although there have been considerable advances in the field
in past years, there are still many open challenges for using interaction data in
recommendation systems. These challenges include the efficient instrumentation
and privacy concerns for interaction data. Potentially useful future scenarios include
the extraction of knowledge and experience from the interaction data and the
collection and processing of usage data software at runtime.
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Chapter 8
Developer Profiles for Recommendation Systems

Annie T.T. Ying and Martin P. Robillard

Abstract Developer profiles are representations that capture the characteristics of
a software developer, including software development knowledge, organizational
information, and communication networks. In recommendation systems in software
engineering, developer profiles can be used for personalizing recommendations and
for recommending developers who can assist with a task. This chapter describes
techniques for capturing, representing, storing, and using developer profiles.

8.1 Introduction

Recommendation systems in software engineering (RSSEs) seek to assist indi-
viduals in performing software engineering tasks. In many situations, useful
recommendations will be independent from the developer involved in the task. For
example, a recommendation to inspect a file for faults that is based on code churn
metrics [37] will be the same for everyone. However, there are also situations where
the relevance and quality of a recommendation will be impacted by the personal
characteristics of the developer performing the task.

Consider a system that recommends elements from an application programming
interface (API) that could be used to implement some functionality. A developer
chooses a descriptive name for the method (e.g.,“sortRecords()”), enters some
comments that describe its purpose, and the recommendation system outputs one
or more potentially useful API elements, such as the sort method from a library.
At first glance this sounds like a great system, until we realize that the library sort

method gets recommended every time we implement some sorting functionality.
Here the recommendation system makes the assumption that the recommended
API elements are unknown to the developer, who must discover them to carry
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out the task. For this idea to work properly, the recommendation system must be
able to reason about what API elements might already be known to a developer.
The functionality described above was first implemented by a system called
CodeBroker [54]. One of the prominent features of CodeBroker is that it could
personalize the recommendations by storing a model of the user’s knowledge of
an API, to avoid recommending methods known to the user.

In the context of recommendation systems, personalization is the delivery of
different information (i.e., recommendations) depending on the target user [1, 13,
15,19]. The concept of personalization is pervasive in many application domains for
recommendation systems. For example, Netflix’s personalized movie recommender
is responsible for as much as 60% of its movie rentals [40]; Google search engine
has provided personalized search results at since least 2009 [16]. Outside the context
of recommendation systems, more complex personalization approaches involving
personalizing the delivery of the content have found success in domains such as
intelligent tutoring systems [47], natural language dialog systems [51], and adaptive
hypermedia [48]. Despite its successful use in commercial systems, personalization
is not yet widely supported in the software engineering domain.

Customization is often considered to be a type of manual personalization. In
customizable systems, users have the ability to build their own profiles by specifying
preferences, typically from a list of options [15]. Systems that support customization
are usually called adaptable systems. An example of an adaptable system is
MyYahoo!: Users of MyYahoo! can adjust what type of content they prefer to see
displayed in their homepage (e.g., type of news articles, stock prices), as well as
how the content should be organized. In software engineering, the IBM Rational
Application Developer provides an example of a customizable system. This system
is a development environment built on top of the Eclipse integrated development
environment (IDE) that allows users to specify roles, such as “Java developer” and
“Web developer.” These roles simplify the user interface for each role by limiting
the number of available features [12].

The techniques needed to support customization within an application are well
understood. In the simplest case, customization can be implemented through a
simple key-value property mechanism. For this reason, this chapter focuses instead
on adaptive systems that can personalize recommendations automatically, typically
based on inferred user characteristics.

Beyond modeling the technical knowledge of a developer, as in the case of
CodeBroker, RSSEs can take into account other characteristics of developers.
These include not only basic information maintained by their employer (such
as demographic information) but also more complex structures that capture their
communication network. In the personalization community, a representation that
captures these types of personal characteristics is called a user profile or a user
model [1, 13, 15, 19].

In software engineering, models of developer characteristics are not only useful
for personalizing recommendations: they are also the basis for producing rec-
ommendations about developers. For example, Expertise Recommender [32] can
discover and recommend developers who have the most expertise on a given module

http://www.eclipse.org/
http://www.ibm.com/developerworks/rational/products/rad/
http://my.yahoo.com/
http://www.ibm.com/developerworks/rational/products/rad/
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by analyzing the change history of a system under development. In the case of
such expert-finding tools, the developer characteristics stored and analyzed by the
system under development are not necessarily those of the developer using the
recommendation system (as in the case of personalization). For this reason, we use
the term developer profile to refer to a collection of information about a developer,
to avoid the overly restrictive focus on users.

In this chapter, we describe a collection of techniques that can be used to build
developer profiles. We begin with a discussion of the potential applications of
developer profiles in software engineering, illustrated with a description of their use
in three different systems (Sect. 8.2). We follow with a presentation and discussion
of the techniques necessary to collect and store different types of information about
developers. Section 8.3 focuses on modeling software development knowledge
and Sect. 8.4 discusses organizational information and communication networks.
In Sect. 8.5, we discuss general issues related to the maintenance and storage of
developer profiles. We conclude in Sect. 8.6 with a short discussion of the risks and
limitations of developer profiles in RSSEs.

8.2 Applications of Developer Profiles

The two main areas of application for developer profiles in RSSEs are to personalize
recommendations and to recommend developers.

8.2.1 Personalizing Recommendations

We return to CodeBroker, the RSSE introduced in Sect. 8.1, to illustrate how
capturing a model of a developer’s knowledge supports adaptive recommendations.

CodeBroker [54] facilitates code reuse by recommending Java methods that
can be used to complete a task. Figure 8.1 shows the system operating within
Emacs. The figure shows the Java source code written by a developer in the process
of implementing randomization functionality in a card game. Specifically, the
developer has just finished typing in the signature of the getRandomNumber method,
preceded by some descriptive comments. At that point the developer moves beyond
the method signature (see the cursor in Fig. 8.1), and CodeBroker automatically
generates recommendations (bottom view in Fig. 8.1). The top recommendation is a
method named getLong from the Randomizer class. This API method generates a
random number between two given long integers, essentially the functionality and
signature the programmer is about to implement. Here the programmer is obviously
unaware of this API method. The recommendation is useful because it saves the
overhead of reimplementing getRandomNumber.

To produce recommendations, CodeBroker considers terms in the comments
and method signature and uses information retrieval techniques to match them

http://www.gnu.org/software/emacs/
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Fig. 8.1 CodeBroker recommendations in Emacs [reproduced with permission, from 53]

• java.applet

– Applet
· getParameterInfo (added by Jeff at Thu 2 08:30:10 2000)

• java.io

– File
· exists (Thu Nov 2 08:35:49 2000, Nov 2 08:15:10 2000, Nov 2 08:10:22 2000)
· isAbsolute (Thu Nov 2 09:36:31 2000, Nov 2 09:19:15 2000)

– CharArrayWriter
· toCharArray (added by Jeff at Thu 2 09:00:11 2000)

• java.net (added by Jeff at Thu 2 09:15:11 2000)

Fig. 8.2 An example developer profile in CodeBroker [53]. The top-level bullets indicate the Java
package, the second-level bullets indicate the classes in the corresponding package, and the third-
level bullets the methods in the class

with methods of the Java Development Kit API. However, in this context, reuse
recommendations are only useful if they support the discovery of new API methods.

To avoid generating useless and distracting recommendations for methods
already known, CodeBroker maintains a developer profile that captures the API
methods estimated to be known by a developer and removes from the recommenda-
tion list any method found in the developer profile.

A developer profile in CodeBroker initially contains the methods used by the
developer. As the developer types in more code, the profile is automatically updated.
Figure 8.2 shows an example of a developer profile in CodeBroker. The profile
includes two methods of the java.io.File class that were automatically included
through code analysis. In addition, the developer (“Jeff”) complemented the profile
by specifying that he had knowledge of the whole Java package java.net as well
as the individual methods getParameterInfo and toCharArray. As this example
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Fig. 8.3 Mylyn in action in the Eclipse IDE [reproduced with permission, from 23]

shows, manual adjustments to the profile can be done at various levels of granularity
(e.g., entire packages or classes).

CodeBroker uses developer profiles to provide filtering on a list of API elements
recommended for reuse. The concept of information filtering is taken further in
Mylyn [23], a tool that adapts the user interface of Eclipse to the present needs
of a developer by hiding information (code elements) that have not been accessed
recently and by emphasizing the parts of the user interface that are more likely to be
accessed.

Figure 8.3 shows Mylyn in action as part of a scenario originally described
by Kersten and Murphy [23]. Mylyn adapts various views in Eclipse (e.g., the
Package Explorer: Fig. 8.3, item 3) to only show the information relevant to the
current task. The task the developer is working on is entitled “Task-1: Refactor
ResourceStructureBridge” (marked with a solid dot in the Task List view in
Fig. 8.3, item 1).

Mylyn adapts the user interface based on the developer’s interaction history in
the IDE. Program elements that are accessed more often and more recently as part
of a task have higher importance, called degree-of-interest (DOI). For example, in
a view that displays the system structure (Fig. 8.3, item 3), the only artifacts visible
are the ones Mylyn estimated to be relevant. This view also marks the most relevant
artifacts in bold.

In Mylyn, the structure that stores relevant elements and their corresponding DOI
is called a task context. A user can also manually increase or decrease the DOI of
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Fig. 8.4 An example of interface to present expertise recommendations based on Expertise
Recommender [32]

the elements in a task context, resulting in direct changes to the model. We consider
that task contexts are a form of developer profile that captures the immediate interest
of a developer involved in a task. In addition to adapting the user interface, task
contexts can also be used to restore the resources visible in the user interface at
a different point in time, for example after an interruption. The developer profile
used in Mylyn is task oriented and does not capture information beyond the current
task.

8.2.2 Recommending Developers

Recommendation systems in software engineering can also be used to help locate
individuals with a certain expertise. The problem of identifying who has the right
expertise has become increasingly important given the ubiquity of large and dis-
tributed teams [17]. For these types of recommendation systems, developer profiles
constitute the data items in the knowledge base used to produce recommendations.
These systems are exemplified by Expertise Recommender [32].

Expertise Recommender was designed to help technical support personnel get in
contact with the people best able to solve customer support requests. Figure 8.4
shows a list of recommendations produced by Expertise Recommender. In this
scenario, a technical support representative fielded a support call from a customer
and entered the request “I/O Error 16 in program M.013 customer PCI” with, among
others, the value “Social Network” as a filter.

In Expertise Recommender, recommendations are derived from various filtering
heuristics applied to a profile database. In principle the profile database can capture
any kind of developer information available in an organization. In the example
described by McDonald and Ackerman [32], the profile database is populated from
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two basic data sources: the version control system (VCS) for the software and the
issue repository.

The issue repository is used to search for technical support personnel who had
solved problems with the description similar to the input query. In our example
scenario, the query includes three pieces of key information: the module name
“M.013,” the customer name “PCI,” and the problem description “I/O Error 16.”
Each of the three pieces of information would trigger a separate search for past
problems that match the information. The recommendation is the technical support
personnel who solved the past problems that best matched the three pieces of
information. In addition, Expertise Recommender supports another mode (“Change
History” rather than “Tech Support”) which uses source file contributions from
commits and the proximity in the organization of the expert requester.

The Expertise Recommender architecture does not explicitly capture the concept
of a developer profile as an explicit data structure. Instead, various optimizations
are used, such as database indexes and maps. We can nevertheless consider that a
developer profile in Expertise Recommender implicitly captures, in addition to basic
contact information, a list of modules and a term vector that contains the important
words in the description of all the issues solved by a developer. This observation
illustrates the important point that developer profiles are conceptual entities that do
not need to be explicitly represented as a unit in the implementation of the RSSE.

An interesting note about Expertise Recommender is that the recommendations
produced take into account the characteristics of the user of the system. The “filter”
parameter allows the results to be filtered according to two values: “Department”
and “Social Network.” The “Department” value returns developers ranked according
to how close they are to the user of the system in terms of the official organizational
structure (e.g., it prioritizes developers in the same department). “Social Network”
instead prioritizes developers who are the closest in an ad hoc social network
that takes additional personal relations into account. The developers of Expertise
Recommender argue that this personalization feature helps distinguish their system
as a recommendation system, in contrast to a more traditional information retrieval
system. In the context of this chapter, we note that this feature makes Expertise Rec-
ommender an example of a system that uses developer profiles both as knowledge
base elements and as a means to personalize the recommendations.

8.3 Development Knowledge

Software development knowledge is the knowledge developers have about both the
system(s) they are working on and their general software development experience.
Software development knowledge is usually derived implicitly rather than by
explicitly asking a developer to provide it. This process requires an RSSE to infer
the development knowledge from various actions performed by the developer. These
actions are typically captured by three types of artifacts: change logs stored in a
VCS, interaction traces collected by an IDE, and records stored in an issue tracking
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system. Sections 8.3.1–8.3.3 discuss these three data sources used for inferring
development knowledge. We follow with a brief discussion of how certain types
of software development knowledge can also be collected by explicitly asking the
developer (Sect. 8.3.4). We present several common representations for software
development knowledge in Sect. 8.3.5.

8.3.1 Version Control System Data

Version control system data typically refers to commits obtained from source code
revision repositories, including the traditional ones such as SVN and CVS and, more
recently, distributed repositories such as Git. There are several ways to use VCS data
to infer development knowledge.

One heuristic is to assume that a developer changing a particular part of the
source code has knowledge in that part of the code. One can find out who changed
which lines of code by looking at the commit logs from a VCS. This heuristic is
derived from the so-called Line 10 rule observed in a field study [32]: when a
developer wanted to know who had the expertise for a particular part of the code, say
line 10 of a particular file, the developer would consult the VCS commit log to see
who was the last person changing line 10.1 Expertise Recommender [32] uses this
idea to recommend developers who have the expertise for a software module. Each
developer profile includes the list of modules that a particular developer has last
changed. Expertise Recommender takes a textual query as input and identifies all of
the program modules mentioned. The list of recommendations are all the individuals
who have modified a module mentioned in the query, ranked by recency of the last
change by an individual.

The Line 10 heuristic is useful to infer knowledge about the source code being
developed and when the change history of the source code is available. However,
this heuristic would not work for estimating expertise about API elements, or
about parts of the code for which change history is not available. For example,
CodeBroker personalizes recommendations by filtering out recommendations that
contain API elements known to the user. If a developer has used the Java API method
addElement from java.util.Vector, CodeBroker would not recommend this
API method. For this type of filtering to work, an RSSE must model the developer’s
knowledge of the API by analyzing which API elements are used in the code.

Extracting which API elements (e.g., methods) are used (e.g., called) from
commits is a technical challenge. Identifying which method a developer is using in
the code requires determining the type bindings of object variables that are the target
of methods. This task is normally handled by compilers. However, in the context of

1Using data from older VCSes requires mapping lines to high-level program elements such
as methods. For more information about this step, readers can refer to Zimmermann and
Weißgerber [58].
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1 import p.;
2

3 class B {
4 void main() {
5 A a = new A();
6 a.p1 = "hello";
7 a.dd(a.p1);
8 a.remove(a.p1);
9 }

10 }

Fig. 8.5 An incomplete Java
program demonstrating the
difficulty to extract
information about method
calls (example adopted from
work by Dagenais and
Hendren [10, pp. 1–2])

package p;

public class A {
String p1;
void add(Object o) {}
void remove(Object o) {}

}

Fig. 8.6 The part of the
program missing in the
incomplete program
demonstrated in Fig. 8.5
(example adopted from work
by Dagenais and Hendren
[10, pp. 1–2])

a commit, resolving type bindings is technically challenging because commits from
a VCS are generally a subset of the whole program, possibly without the necessary
dependency information for the usual type binding resolution to work. Even when
one has access to the source code and the dependencies of the whole program, it
may not be practical to compile a snapshot of the whole program for every commit.
One technique that can infer type bindings from commits is partial program analysis
(PPA) [10].

For example, suppose that a developer added one line of source code (line 7) to
class B in Fig. 8.5. For the purpose of building the developer profile, we want to
know which method is called at line 7 so that we can store this information in the
developer profile. A syntactic analysis of only the code shown in Fig. 8.5 can only
tell us that a method named add with one parameter is called at line 7, but not which
class declares add nor the type of the parameter. This is especially problematic when
multiple classes declare methods with the name add and one parameter. Improving
upon pure syntactic analysis, PPA infers that method add(String) is called by
looking at the string in the assignment in line 5. This inference is not strictly correct:
in this example, apparently, class A (Fig. 8.6) only has one method named add with
one parameter, add(Object) (line 13); thus, the inference is more specific than the
one provided by syntactic analysis on the full program consisting of classes A and B.

Besides the actual code location and the methods that are called at the location,
additional method calls in the code lines above and below a changed line can also
be considered for inclusion in a developer profile [28]. For example, if a developer
changed line 7 in the code in Fig. 8.5, we could also infer that the developer also
knows the method remove at line 8. Textual terms extracted from commit messages
and the actual commit have been used as a surrogate of expertise for the purpose of
bug triage [31]. Terms extracted from the commit are taken from the identifiers and
the comments of the code. Bug triage is a process necessary in many open source
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projects that maintain an issue tracking system. This triage process can become a
resource-intensive task when a significant number of incoming bug reports are filed
by outsiders because a project member has to determine whether an incoming bug
report is valid and, if so, who should be assigned to the task of fixing the bug.

8.3.2 Interaction History Data

The second type of data one can mine to capture a developer’s technical knowledge
is interaction history. Interaction history refers to a sequence of events initiated by
actions performed by a user with a tool. In Chap. 7, Maalej et al. [29] provide
a detailed discussion on interaction history. We show how an RSSE adapts its
output to individual users by looking at Mylyn [23]. Mylyn adapts various views in
Eclipse to only show the information relevant to the current task. Mylyn harnesses
interaction history involving software artifacts recorded in an IDE as a surrogate of
relevance to the task.

In Mylyn, some events are the direct result of a developer’s interaction with
program artifacts. These events include selections (such as selecting a Java method
and viewing its source) and edits. Other events are caused by indirect interactions.
For example, when refactoring a class ResourceStructureBridge to a different
name in Eclipse, Eclipse will update the name of the classes referencing the
renamed class. Each of the referencing classes results in an indirect event called
propagation. As part of this refactoring, Mylyn also tracks the actual rename
operation in Eclipse, called a command event in Mylyn. Table 8.1 shows the events
corresponding to this refactoring operation, as part of the task “Task-1: Refactor
ResourceStructureBridge” first described in Sect. 8.2. The columns with a name
prefixed with “Event” denote pieces of information captured in a Mylyn event and
the column “Developer action” describes the event. For simplicity, we use an event
number instead of the timestamp of an event (the column named “Event #”). The
column “Event origin” refers to the tool associated with the event recorded and the
column “Event target(s)” refers to the software artifacts associated with the event.
Event 1 corresponds to the developer selecting the class. Events 2–6 correspond to
the propagation and command events resulting from the rename operation.

Another example of an indirect event is when the developer selects the get

ContentType method (Fig. 8.3, item 2). For each structural parent of the method (its
class, source file, package, source folder, and project), Mylyn creates a propagation
event. These propagation events cause the structural parents to become relevant and,
therefore, visible in the Package Explorer (Fig. 8.3, item 3).

In addition to changes and navigation to code elements, a wide range of other
interactions can be observed in an IDE. In the web domain, researchers have found
that linger time and amount of scrolling can be useful indicators of interest [1].
Evidence to this effect is mixed in the software engineering domain [11, 44]: To
determine whether source files visited by a user are relevant for the task, Mylyn [23]
uses how frequently and recently a program element is being accessed, but not how
long a developer stays on a program element nor how much a developer scrolls
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Table 8.1 Sample events in the interaction history captured by Mylyn (table
adopted from the work by Kersten and Murphy [23])

Developer action
Event

#
Event kind Event origin Event target(s)

select RSB 1 selection Package Explorer class

rename RSB 2–5 propagation Package Explorer source file, package
source folder, project

rename RSB 6 command Rename refactoring class

“RSB” is short for “ResourceStructureBridge”

within a program element, as its means for retaining source files visited by a user as
relevant for the task. A separate study found that scrolling does not indicate interest
or importance of the element, but rather an indication that the developer is lost [44].

Navigating to a code element and checking in changes to a VCS can imply
different levels of familiarity on the source code. Fritz et al. [14] found that initial
authorship of a code element is the strongest factor for predicting the correct level of
source code familiarity (compared to subsequent authorship, navigating to the code
element, and intermediate editing of the code element). Robbes and Lanza [43]
compared algorithms making use of various types of implicit data, interaction
history, and commits, in terms of their predictability of the next change.

8.3.3 Issue Tracking System Data

The third type of data source that can reveal development knowledge is issue track-
ing systems. Issue tracking systems refer to systems that maintain lists of issues such
as software bugs. In Chap. 6, Herzig and Zeller [18] provide some practical advice
in mining bug reports. In open source projects, issue tracking systems allow users
to report bugs directly to the open source developers. Many commercial software
organizations use issue tracking systems as an internal medium for coordinating
software testers, developers, and managers in reporting, prioritizing, and discussing
issues. Another type of issue tracking systems keeps track of technical support call
tickets in a call center.

Expertise Recommender [32] identifies technical support personnel who can
resolve a customer support request. The design was motivated by a field study [32]
on the process for identifying which of the technical support staff can solve a
technical call. The heuristic is to find similar technical calls completed in the past,
by first querying the support database and then determining which of the results
were similar to the current problem.

For each technical support staff member, Expertise Recommender builds an entry
in the profile database using three pieces of information from the technical support
problems resolved by the given person: the problem description, the customer, and
the module responsible for the problem. These three fields are used to build three
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term vectors that characterize a staff member. A term vector’s dimensions are textual
terms, and the value of a dimension is the number of times a term appears in the
past problems resolved by the staff member. In Chap. 3, Menzies [33] explains the
concept of term vectors in more detail.

In the scenario described in Sect. 8.2, the customer “PCI” complained in the
call that the system has a file error “I/O Error 16” in the module called “M.013.”
The representative taking the call was familiar with the module in general, but
was unsure why this particular customer was experiencing the file error. For
this representative’s profile, the customer vector’s “PCI” dimension would have
value 0 because the representative had not dealt with the customer “PCI” before,
while the module vectors “M.013” dimension would have a positive value because
the representative had dealt with the module in previous problems. On the other
hand, the top personnel recommended in Fig. 8.4, Susan Wright, most likely had
positive values for the customer vector’s dimension for “PCI,” the module vector’s
dimension for “M.013,” and the problem description’s dimension for “I/O Error 16.”

In Expertise Recommender, a term vector is normalized using a master term
vector which represents the total number of times a term is used in the entire problem
database. Other technical challenges in dealing with textual terms include building
a thesaurus and handling misspellings and abbreviations.

8.3.4 Explicit Data Collection

The data collection strategies presented above estimate development knowledge
using heuristics applied to various data sources. A more direct way to obtain
development knowledge is to explicitly ask the developer to provide the information.
In e-commerce, data provided explicitly usually comes in the form of user ratings.
A classical example is the Netflix movie recommendation system. For the Netflix
system to provide useful recommendations, users have to first explicitly provide
examples of movies they like or dislike in a scale of one to five stars.

Besides the fact that explicit data collection imposes a burden on the user and
may not scale in many situations, a problem with manually generated profiles is that
users may not have the ability to evaluate their own expertise. Because of these two
problems, it may not be practical for RSSEs to ask a developer to provide the level
of expertise for each individual item.

Instead of solely depending on explicit information, RSSEs can elicit information
from the user to complement the implicitly captured information. To reduce the
effort from the user, explicit information can be collected at a coarse-grained level,
where a user indicates a large group of items (in contrast to a fine-grained approach,
where a user provides information for individual items). CodeBroker, described in
Sect. 8.2, allows a user to manually adjust the developer profile. Developers can do
so by specifying that they have knowledge at a coarse-grained level, for example, on
a whole Java package java.net in the developer profile demonstrated in Fig. 8.2.
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In terms of the quality of data obtained explicitly versus implicitly, in the
web domain, conclusions have shifted over time. Earlier opinions suggested that
implicitly collected data was of lower quality than explicitly collected data [21].
More recent studies provide a more positive perspective on the usefulness of
implicitly collected data [49, 52]. There is not as much investigation in soft-
ware engineering. Fritz et al. [14] investigated two types of implicitly collected
information—interaction history and commits from a VCS—to construct a model of
a developer’s familiarity with a given code element. The study shows that data from
the commits from VCS is a better indicator than interaction history when inferring
a developer’s familiarity to a code element.

8.3.5 Representation

The simplest way to represent what a developer knows is to list the signature of the
program elements a developer has knowledge of, without distinguishing the extent
of the knowledge. For example, CodeBroker’s user profile (Fig. 8.2) includes the
list of method signature for all of the methods in a developer profile, organized in
terms of enclosing class and package. CodeBroker does not model the extent of the
knowledge but implicitly assumes that a developer has the same knowledge on every
method listed in the developer profile.

This assumption is not always appropriate. In Expertise Browser, a tool anal-
ogous to Expertise Recommender, the developer profile is also a list of what is
called experience atoms: locations of source code checked in by a developer [35].
Expertise Browser keeps counts of how many times a particular line of source code
has been modified by a developer. These experience atoms can be used to reason
about the expertise of a person, or aggregated to reason about the expertise of an
organization. These counts can also be used to rank recommendations for the most
expert developer on a given part of the code.

The assumption of Expertise Browser is that each use of a program ele-
ment increases the extent of the knowledge equally. However, different weighting
schemes can also be considered for this purpose. For example, the frequency counts
can be normalized by the global counts computed on all individuals. The intuition
is that common methods such as List.add would get less weight because they are
used many times by many individuals, whereas rarer methods would get a higher
weight. The extent of the knowledge can also be affected by how recently the
developer acquired the knowledge. This idea is discussed in the profile maintenance
section (Sect. 8.5).

A developer profile is not limited to the program elements that a developer
interacted with directly, but can also represent relationships between program
elements. In Mylyn, indirect events such as the propagation event in Table 8.1
represent relationships among program elements. However, Mylyn does not store
these relationships in a persistent task context. An in-memory task context graph
representing these program elements and relationships is constructed by processing
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the events in the persisted task context. The benefit of this approach is that the task
context can be shared with other developers. When loaded on another developer’s
workspace, the graph can be adjusted to adapt to the program elements and
relationships present in the other developer’s workspace. When reconstructing the
in-memory representation on another developer’s workspace, additional interaction
history incurred by the other developer can also augment the representation.

The weighting for each element in the task context, called DOI, is derived from
the frequency and recency of the events in the interaction history. The frequency
is the number of interaction events that refer to the element as a target. Each type
of event has a different scaling factor, resulting in different weightings for different
kinds of interactions. Old events are weighted less because of a decay function, as
discussed in Sect. 8.5. The DOI of a relation, consisting of a source and a target
element, is computed using the same DOI algorithm, by means of the relation’s
target element.

Instead of capturing a list of program elements, it is also possible to aggregate
the knowledge they represent by using term vectors that represent a normalized
version of the frequency of individual terms used in software development artifacts
authored or changed by a developer [31]. Vector-based user profiles thus refer to the
representation popular in information retrieval for textual documents: a document
is represented as a vector of n dimensions, where the dimensions correspond to
n indexed textual terms2 in the corpus of documents. For example, instead of
containing a list of methods a developer has used, a developer profile could contain
a method-by-term matrix where every row represents a method and every column,
a term in the vocabulary of all terms in the signatures of methods in a program
(assuming method identifiers are tokenized, e.g., by relying on the camel case
convention). It is also possible for the term vectors to capture information in the
source code of the method, their comments, etc. In Chap. 3, Menzies [33] dives
deeper into information retrieval.

This approach is used by a bug triage recommendation system where a user
profile is the text extracted from the most recently fixed bug reports [3]. Each
vector in the profile contains text converted from free-form text in the summary and
description of a report. A value in the vector indicates the frequency of a particular
term, normalized by the length of the bug report, total intra-document frequency, and
inter-document frequency. Another bug triage recommendation system also used a
vector representation, not to model the text from bug report but terms extracted from
the source code changes by a given developer [31]. A value in a vector is the term
frequency present in a source code change.

More sophisticated representations and algorithms have been explored in
domains outside software engineering, for example, in adaptive educational systems
and personalized information retrieval. A survey by Steichen et al. [48] provides an
overview.

2Terms are typically tokens from document corpus, stemmed or not depending on the application,
after removing stop words and non-alphabetic tokens [30].
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8.4 Organizational Information and Communication
Networks

To make recommendations in a software engineering context, it is also possible
to leverage data about the position of developers in their organization, or infor-
mation about their communication networks. Organizational information includes
characteristics such as a developer’s position in the organization, the management
structure, and a developer’s role in the software development process. Developers’
communication networks are the graphs that model their various interactions with
other people for work purposes.

Organizational information and communication networks can play various roles
in RSSEs, from being the central data source used to generate recommendation to
serving as a filter for recommendations generated in some other way. For example,
organizational information can be used as the basis for predicting fault-prone
modules [38], Expertise Browser allows users to explore recommended experts by
organizational structure [35], and Expertise Recommender offers the capability to
filter its recommendations to only show those in the social network [32].

8.4.1 Data Collection

Organizational information can normally be obtained from sources such as company
organization directories and software project management servers. A standard
protocol for accessing and maintaining a company organizational directory is
the Lightweight Directory Access Protocol (LDAP). Such a directory typically
contains the geographical location and the position of an employee. Many company
directories are built on an LDAP server as the back-end and use the LDAP’s
query facility. A example query that such company directories support is to find
all employees located in a particular city and have a particular role (e.g., “software
developer”). RSSE designers can use the query facility to obtain organizational
information.

Software development roles can be implicitly mined from an integrated software
development management platform, such as IBM Rational Team Concert [8]. Team
Concert allows a software development team to create and specify roles. This
information can be obtained from the Java API of Team Concert.

Developers’ communication networks can be inferred directly from communica-
tion media such as emails and IRC chat logs, for example by drawing edges between
senders and receivers. Communication networks can also be built from a variety
of other sources, depending on what can be considered to constitute evidence of
communication. Sources such as VCSes and issue tracking systems can be used as
an indicator of interaction by considering that developers are related if they have
been involved with the same issue. Involvement can be specified as a subset of any
of the possible ways for a developer to be associated with a bug report, including

http://tools.ietf.org/html/rfc4511
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fixing the bug described in the issue report, being CCed (carbon-copied) on emails
related to the issue, or providing comments on the issue [2].

Two important technical challenges when building communication networks
from VCS data and emails are linking bug reports with the source code artifacts
that solve them, and de-aliasing different email addresses that may be associated
with the same person. Unless sufficient care is taken to control imprecision in
the linking and email aliases, these issues can introduce a significant amount of
noise in the resulting networks. Bird et al. [5] offer an in-depth discussion of the
problem of linking bug reports to the corresponding fixes [4]. For email de-aliasing,
one algorithm found to work well is to group email addresses using a clustering
algorithm. (In Chap. 6, Herzig and Zeller [18] provide more information about
clustering algorithms in general.) The clustering algorithm requires a similarity
function that returns a similarity value between any pair of email addresses. The
output of the algorithm are groups of email addresses; the email addresses in a
group are predicted to be associated with the same individual.

STeP_IN is an example of RSSE that relies on organizational data and communi-
cation networks [55]. STeP_IN recommends relevant experts and artifacts based on
information obtained from VCSes, issue tracking systems, and a communication
network derived from email archives. One unique feature of STeP_IN is that
instead of simply capturing communication relationships, STeP_IN also models
how likely it is that the person being recommended wishes to be involved in
the communication. Specifically, STeP_IN captures the concept of obligation, to
avoid one constantly asking help from a particular colleague, or to avoid one only
asking help but never helping others. In STeP_IN, a user can explicitly change the
preference value describing whether to be involved in an interaction with a particular
colleague.

8.4.2 Representation

A communication network is a graph that can simply be represented as an n � n

adjacency matrix, where n is the number of nodes in the graph and a value of 1 in a
cell ij represents an arc between nodes i and j (and 0 otherwise).

Coordination requirements illustrate how a matrix representation of developer
characteristics can be employed to compute derived information about developers.
Coordination requirements represent a type of recommendation, namely, informa-
tion about who a developer should coordinate with to best complete the work [7].

Conceptually, the approach uses two input matrices:

1. a file authorship matrix (a developer by file matrix), where a cell ij indicates the
number of times a developer i has committed to a file j ; and

2. a file dependency matrix (a file by file matrix), where a cell ij (or j i ) indicates
the number of times the files i and j have been committed together.

The approach computes coordination requirement through two matrix multipli-
cations (Fig. 8.7). The first product multiplies the file authorship matrix and the file
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Fig. 8.7 Dimensions of the input matrices and the final matrix representing coordination require-
ments

Fig. 8.8 Dimensions of the input and the coordination requirements for a given developer d1

dependency matrix, resulting in a developer by file matrix. This matrix represents
the set of files a developer should be aware of given the files the developer has
committed and the relationships of those files with other files in the system. To
obtain a representation of coordination requirements (a developer by developer
matrix), the approach then multiplies the first product with the transpose of the
file authorship matrix. This final product is a matrix where a cell ij (or j i )
represents the amount of shared expertise of developers i and j . More precisely, the
matrix describes the extent to which developer i committed files that share commit-
relationships with files committed by developer j .

Emergent Expertise Locator is a recommendation system that builds on the
concept of coordination requirements [34]. To construct a profile specific to a given
developer d , Emergent Expertise Locator constructs the coordination requirements
on the fly, focusing on the current developer. As a result, the product is a vector
that represents the coordination requirements relevant to the given developer (see
Fig. 8.8).

8.5 Profile Maintenance and Storage

A number of design decisions can impact developer profiles and their use in RSSEs.
This section discusses two important design dimensions for RSSEs using developer
profiles: profile maintenance and profile storage. Profile maintenance concerns
whether an RSSE can adapt a developer profile over time. This issue is referred to as
adaptivity by the user modeling and recommendation system community [20, 36].
Profile storage is concerned with which component of an RSSE the profile is
constructed and stored.
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8.5.1 Adapting Developer Profiles

The simplest approach to profile maintenance is to keep the profile static. When
using implicitly gathered data, the user profile is based on the entire available data at
the time of the profile construction. For example, usage expertise can be mined from
the entire change history of a system [45]. However, in any high-churn situation,
static user profiles will quickly get out of date. There are two ways to improve upon
static profiles.

First, in a system that builds developer profiles in a batch mode, the profiles can
be manually adapted by requiring the user to specify which time period corresponds
to the current experience [35]. In such cases we would consider the profiles to be
adaptable.

Second, in more dynamic systems, another strategy is to ask the user to set some
parameters that guide the adaptation of the user profile. In Mylyn [23] for example,
a developer needs to explicitly declare the current task, so that the Mylyn monitor
can identify the boundary of the interaction history that belongs to the current task
context. This design decision is a result from the user study performed on an earlier
version of Mylyn [22]: that version of Mylyn did not have the notion of tasks. The
user profile was built from a single stream of interaction history, where the relative
importance of older interaction history decayed automatically.

The motivation for asking a programmer to explicitly declare which task the
programmer is working on is that programmers tend to switch between multiple
tasks. This semiautomated approach to user profiling helps to make the profiles
partly adaptive. Some work has been proposed to support the identification of task
boundaries. The SpyWare tool displays a visualization and identifies sessions of
work based on several measures including the number of edits per minute [42].
Coman and Sillitti [9] proposed an approach to segment development sessions.

The problem of automatically detecting parts of the interaction history that
belongs to a task remains a hard problem [53], but its solution would eventually
make user profiles completely adaptive. The following section presents additional
strategies for achieving adaptive developer profiles.

The most straightforward way for an RSSE to adapt a developer profile is through
a fixed time window. The notion of time can be defined either as the usual elapsed
clock time [3], or in terms of a fixed number of events in the interaction history
[46, 50].

Different strategies are possible for eliminating data outside a time window of
interest. The simplest is obviously to delete older events. However, when developer
profiles associate data with a degree of association (in contrast to a binary, in-or-
out, model of what pieces of information are associated with a developer), it is
also possible to decay the association of older elements. For example, Mylyn uses
a decay function for program elements in a task context. In Mylyn, the decay is
proportional to the total number of events associated with the task. As another
example, Matter et al. [31] employed a 3 % weekly decay on VCS commits used



www.manaraa.com

8 Developer Profiles for Recommendation Systems 217

for building a developer profile; this decay provides the optimal level of accuracy in
the bug triage predictions.

8.5.2 Storing Developer Profiles

A major design decision for storing developer profiles is whether to store them on
server components (e.g., in the back-end tier in a multi-tier architecture), or in the
client component used directly by users.

Developer profiles based on information mined from server repositories tend to
be stored on servers. Such repositories include VCSes and issue tracking systems
as discussed in Sect. 8.3. Systems that employ profiles based on organizational
information and communication networks need information about multiple users
[7, 17, 39]. Such systems typically require a server-based approach. The STeP_IN
system models a software project as a server-based project memory with relations
between artifacts and their socio-technical links with developers [56].

A major concern with the collection and storage of developer information in a
server is privacy. In RSSEs, privacy is a concern especially when data is collected
implicitly (e.g., interaction history) and stored on a server. A simple solution is to
allow a user to disable the data collection. For example Mylyn, which monitors a
developer’s interaction history, has a “silent activity mode” [22]. However, since
tools like Mylyn base their recommendations on interaction history, disabling the
collection of interaction history completely renders the tool useless. RSSE designers
interested in other ways to respect privacy can consult research [e.g., 6, 24–26] on
privacy-preserving personalization and recommendation systems.

In storing interaction history on the server, Mylyn [23] is somewhat of an
exception. Typically, interaction history is stored in the client side, not only because
of privacy reasons but also because of the voluminous nature of raw interaction
history. Conceptually, the interaction history is a sequence of ordered events. If
storing interaction history on the server is important, data compression strategies
must be considered. For example, Mylyn does not record all user actions. Most of
the events involving the same program element used in the same way are aggregated.
When such an aggregation happens, the event data stores two timestamps instead
of one: the timestamp of the first event and the timestamp of the last event being
aggregated. Mylyn stores task contexts offline as a compact representation of the
interaction history in an XML file in the client side [23]. Such an XML file is
designed to be uploaded with the corresponding task, a bug report, or a feature
request, if the user chooses to share a task context. One advantage of this client-
based approach is the portability of task contexts as they can be used by other tools
and analyses [27, 57].

Systems that support customization (see Sect. 8.1) usually employ developer
profiles on the client side. In the web domain, websites such as MyYahoo! store
customization information in cookies, pieces of data sent from a website and
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stored in the user’s web browser [20]. Analogously, in software engineering, UI
customization information is typically stored as an individual’s local settings.

8.6 Conclusion

In our daily interactions, many of us have already been immersed in adaptive
recommendation systems as we browse results from a search engine, choose a
book to purchase online, or decide on a movie. These systems implement a type
of personalization. Adaptive recommendations are constructed based on a user’s
interest represented by a user model. In the context of RSSEs, developer profiles
support not only the adaptive recommendations to developers but also the ability to
generate recommendation about developers.

In this chapter, we reviewed the techniques necessary for constructing developer
profiles employed by adaptive recommendation systems for software engineering.
Developer profiles can capture a wide range of characteristics about developers
including their development knowledge, organizational information, and commu-
nication networks.

Many of the issues discussed in this chapter overlap with other aspects of RSSEs.
Version control systems, interaction history, and issue tracking systems are the
key data sources for generating developer profiles, but they are also used for
generating many different types of recommendations, as discussed in Chaps. 6, 18,
7, and 5. Designing developer profiles that accurately and reliably capture the
true characteristics of a developer is an empirical endeavor that will require much
experimentation (Chaps. 10–13). The concept of personalization is also intimately
tied with usability issues (Chap. 9). Readers interested in the general area of
personalization can consult several surveys [1, 15, 19, 20, 36, 48].

Even though personalization can be effective in supporting developers in their
information acquisition tasks, there are concerns that adaptive systems can be too
personal, up to a point where individuals are segregated into information silos, by
not making available information that is available to others [40]. In the context of
software engineering, a developer may discover information that is irrelevant to the
current task but may increase the developer’s overall knowledge and appreciation of
the project. Recommendation systems that focus developers’ information discovery
too narrowly may negatively impact the developer’s overall performance, even if
they successfully support them for individual tasks. An RSSE recommending only
relevant parts of the code to examine for the current task will not allow such
serendipitous opportunities beneficial beyond the current task. Similarly, an expert-
finding tool cannot provide all the information that would be gathered through
impromptu water-cooler conversations. From the technical point of view, Ricci
et al. [41] suggest to use active learning, which “allows the system to actively
influence the items the user is exposed to [. . . ], as well as by enabling the user
to explore his/her interests freely.”
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When we consider the individual developer receiving recommendations from
RSSEs, they inevitably have differences in experience, ability, and needs. In cases
where a recommendation depends on the individual receiving the recommendation,
using developer profiles in RSSEs should then contribute to improving the quality
of recommendations, ideally without stifling the developer’s freedom to explore and
discover.
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Chapter 9
Recommendation Delivery

Getting the User Interface Just Right

Emerson Murphy-Hill and Gail C. Murphy

Abstract Generating a useful recommendation is only the first step in creating a
recommendation system. For the system to have value, the recommendations must
be delivered with a user interface that allows the user to become aware that recom-
mendations are available, to determine if any of the recommendations have value
for them and to be able to act upon a recommendation. By synthesizing previous
results from general recommendation system research and software engineering
recommendation system research, we discuss the factors that affect whether or not a
user considers and accepts recommendations generated by a system. These factors
include the ease with which a recommendation can be understood and the level of
trust a user assigns to a recommendation. In this chapter, we will describe these
factors and the opportunities for future research towards helping getting the user
interface of a recommendation system just right.

9.1 Introduction

Recommendation systems in software engineering (RSSEs) can be divided into
two parts: the backend that decides what to recommend and the frontend that
delivers the recommendation. In this chapter, we refer to the developer for whom a
recommendation is aimed as the user. Toolsmiths, those developers who design and
build RSSEs, often focus on the backend, because one clearly has to have something
good to recommend before presenting it to the user.
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Less attention is paid to the user interface than the backend. A toolsmith has
many options when choosing a user interface for an RSSE. The first iteration of an
RSSE is typically what is easiest to implement, so that is what toolsmiths pick for
their first implementation of an RSSE as a demonstration of feasibility, yet never get
around to improving the user interface. One could make the case that the reason so
few RSSEs have been adopted by the software engineering community is because
toolsmiths have spent so little time thinking about the user interface. But let us
examine the case of one particular recommendation system outside the domain
of software engineering, a case that suggests that the user interface does indeed
matter.

Consider Clippy, a user interface agent that recommended new tools to Microsoft
Word users. Clippy had a reasonably good recommendation algorithm, backed up
by significant empirical research [16]. For example, Clippy would recommend
that users try Word’s letter template, which may have saved the user a significant
amount of time. However, Clippy was often disliked, even hated, by his user base,
enough so that it was listed by Time magazine on its 50 worst inventions list. Why?
Many retrospectives pin the blame on the user interface, such as the indictment of
Whitworth [49] that Clippy was not sufficiently polite.

Although RSSEs do not have such a famous example, the lesson is clear—
the user interface matters. The user interface mechanisms for auto-complete and
variable renaming, which are invoked with a simple keystroke in an editor, are
examples of successful user interfaces for RSSEs, as evidenced by the fact that
most integrated development environments provide convenient mechanisms for
toolsmiths to implement them. However, this does not necessarily mean that these
two mechanisms are the appropriate mechanisms for all information presented by
RSSEs. For example, we have argued that for smell detectors [27], a user interface
based on underlining code that is potentially involved in a smell is inappropriate,
because code smells, such as Long Method [12], are not binary, but are instead
matters of degree. Furthermore, even for RSSEs with a firmly entrenched user
interface, such as code completion, that brings up an overlay in the code editor, it
is not clear that the current user interfaces are the best mechanisms to represent
recommended information—perhaps they are simply the mechanisms to which
people are most accustomed.

Other communities have likewise realized the importance of user interfaces.
For example, collaborative filtering-based recommendation systems, such as
GroupLens [18], have seen increasing attention paid to the user interface in recent
years. Konstan and Riedl [19] refer to a turning point when it became evident that
the evaluation and design of the user experience for a recommendation systems
was as important as ensuring the underlying algorithms were accurate. Work on
the user experience in the collaborative filtering community focuses on such aspects
as personalization, ratings, and privacy. RSSEs typically use algorithms that are
less personalized and thus our focus in this chapter is on different factors than are
reported on in the collaborative filtering-based recommendation community.

In this chapter, we first discuss several factors that affect a user’s likelihood to be
receptive to a recommendation. Next, we discuss the space of options a toolsmith

http://content.time.com/time/specials/packages/completelist/0
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has when creating an RSSE user interface and discuss some of the advantages and
disadvantages of those options. Then, we review some techniques toolsmiths can
use in the design and evaluation of the user interface of an RSSE.

9.2 Presenting Recommendations

The user interface of an RSSE must present recommendations in a manner that
allows users to consider acting upon the recommendations. Presenting the recom-
mendations requires a user interface of some kind. The toolsmith must make many
choices when designing the user interface for a recommender. We describe five
factors the toolsmith must consider: understandability, transparency, assessability,
trust, and timing. As we describe the factors, we provide examples of RSSE user
interfaces that have made different choices. We also describe how the factors
interact.

9.2.1 Understandability

Understandability refers to whether a user is able to determine what a recommender
is suggesting. There are two primary dimensions to understandability: obviousness
and cognitive effort. These two dimensions are independent. A user interface can be
nonobvious, but once learned, may require significantly less cognitive effort.

The obviousness dimension describes how easy or hard it is for a user to
recognize the kind of recommendation being provided. What a recommendation is
may be readily apparent to a user. For instance, a duplicate bug recommender [e.g.,
14] that brings up other bug reports from the same project when a new report
is being considered provides a recommendation that is obvious for the user: the
recommended bugs are in a style and form that a user immediately recognizes as
a bug report. When a recommendation is obvious, little or no training is needed
to describe what the recommendation is to a user. At the other end of the scale, a
recommender that suggests properties of an artifact may require more training. For
example, StenchBlossom [27] displays information about design defects in a users’
code by displaying a visualization that the user must explore and interpret in order
to comprehend.

The effort dimension describes how much cognitive effort is required to under-
stand the meaning of the recommendation when it is presented. A recommendation
for which the cognitive effort is at-a-glance will be easy for a user, once trained, to
recognize the meaning. For example, the size of a petal in StenchBlossom maps to
“how bad” a problem is, and users can simply glance at the visualization to interpret
it, once they have trained themselves to interpret it. As an example at the other end
of the scale, if a user is recommended a source code element, such as a method,
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which may be related to a current element being edited [8], the cognitive effort to
understand the meaning of the recommendation may be much higher.

How can a toolsmith improve understandability in their system? Nielsen [30]
provides several heuristics for user interface design, three of which are applicable for
understandability in RSSEs. The first is “match between system and the real world,”
which suggests that the system should use words, phrases, and concepts that the
user has likely encountered previously. The second is “consistency and standards,”
which suggests that the system should follow conventions and not make the user
wonder whether two words or concepts mean the same thing. The third is “help and
documentation,” which suggests that the system should be usable without help, but
help should be provided when required in a searchable, task-focused, concrete, and
minimal manner.

9.2.2 Transparency

In addition to understanding what a recommendation is, a user must be able to
determine why the recommendation is being provided. Similar to other earlier
works [e.g., 41], we refer to this factor as transparency.

Transparency is related to rationale. If it is clear why a recommendation is being
given, the transparency is high. Using our example of a duplicate bug recommender,
it may be straightforward to provide transparency if the recommendation is based
on similarity of text by reporting a percentage of similarity or by indicating stack
traces that match exactly.

When a recommendation is based on more than a simple measure, describing
the rationale for the recommendation may be more difficult. For example, a
recommender that suggests a likely more efficient command to use in a development
environment may require more substantial text or pictures to explain how the new
command replaces other commands. For example, the user interface for the Spyglass
system [47], which provides command recommendations, shows the user a rationale
that describes the intended action, such as intending to navigate a call relationship
between two specific points in the code, and the various ways of invoking the more
efficient recommended command, such as using a call graph tool through a keyboard
shortcut or a menu item.

When transparency is low and rationale is needed, the content and presentation
of the rationale can have an effect on the user’s perception of the recommender,
such as the user’s trust in the system [43]. The user modeling and collaborative-
filtering recommendation communities have performed many studies into the effect
of different styles of explanation on user behavior [e.g., 25].

How can a toolsmith improve transparency in their system? In general, the more
information that the system can provide about the rationale for a recommendation,
the better. This information is generally available to the underlying RSSE algorithm,
and transparency is merely a matter of providing it to the user. However, the
challenge is doing it in a way that remains understandable. In the field of general
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recommender systems, Ozok et al. [35] advise concrete explanations, such as
“People who use X also use Y,” over abstract ones, such as “You may also like Y.”

9.2.3 Assessability

Once a user understands what a recommendation is and why it is being provided,
there is still a need to assess whether or not a recommendation is relevant and is one
that a user wants to take action upon.

Recommendations provided in software development typically require higher
assessment than those provided in consumer-oriented domains. For instance, rec-
ommending a related news article to a user [18] may be assessable in a split second;
does the title of the article appear interesting? In contrast, recommending a potential
duplicate bug report requires gaining an understanding of the recommended report
and comparing that against the new report: a cognitively challenging task. If seven
potential duplicates are presented to the user, at least six comparisons are needed
with substantial cognitive shifting between each comparison.

There is a spectrum of assessability in software engineering recommenders.
At one end of the spectrum, it may be relatively easy for a user of Reverb [39],
which recommends a webpage the user has previously visited relevant to code
currently being edited, to determine if the webpage is of use for the current task.
The assessment in this case may be simple because the user may recall the webpage
from previous interactions. At the other end of the spectrum, it may be difficult
for a user of Fishtail [38], which recommends a likely relevant but not necessarily
previously visited webpage, to determine if the webpage is useful as it may take
them significant time and effort to read through the recommended page. In general,
the longer it takes a user to assess a recommendation, the higher the cost of false
positives and the more a recommender needs to be accurate.

Assessability is related to, but different from, understandability and transparency.
Easy to use and transparent recommendations may be more likely to be easy to
assess. A recommendation of a webpage that a user has previously visited when they
previously edited code may be easy to understand, transparent, and easy to assess.
However, a recommendation can be easy to understand and transparent yet hard to
assess. The difficulty of assessing the duplicate bugs outlined above is an example of
this case. More difficult to understand and less transparent recommendations may
be acceptable, if once the recommendations are assessed they are almost always
applicable. For instance, a highly accurate duplicate bug recommender may be
acceptable and considered useful and efficient to a user.

How can a toolsmith improve assessability in their system? If a recommendation
is an alternative to what the user already has already done (such as recommending
a duplicate bug report), the system should make it easy for the user to compare
the existing item and the recommended item. In the duplicate bug report example,
the system can highlight the salient differences between bug reports. If multiple
comparisons are necessary, a higher level difference summary may be appropriate.
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In general, the system can make it easy for the user to assess the value of a
recommendation by comparing the recommendation against the alternatives with
respect to the user’s values.

9.2.4 Trust

Even if a recommendation is understandable, transparent, and assessable, a user
must trust the recommendation to be of benefit in the way the recommender system
implies. The need to establish trust varies with the level of commitment that the user
needs to make with using a recommender. At one end of the spectrum, an RSSE that
makes a recommendation to change a user’s code and that will make the change
automatically requires a significant amount of trust. If the automatic change were to
introduce a subtle bug, the user may not recognize it until long into the future, and it
may take a significant amount of time to track down and fix. On the other hand, an
RSSE that auto-completes a method name may not require much trust from a user,
because if users do not like the chosen method, they simply delete the identifier
immediately.

Trust is especially important in RSSEs that necessitate behavior changes on
the part of the user. For example, we have previously created an RSSE that
recommends integrated development environment tools to users [47]. Such RSSEs
might recommend, for example, that a user use a “Call Hierarchy” tool in an
integrated development environment such as Eclipse, rather than using multiple
invocations of a “Find References” command. Even though the RSSE provided
high levels of transparency, which can help build trust [36], users found the
recommendations hard to trust.

So, how can a toolsmith enable the user to trust their system?

Build it Start with a small, modest recommendation before making more substan-
tial recommendations. Although, to our knowledge, user interfaces in RSSEs
have not allowed users to provide explicit feedback, such feedback has been
shown to increase trust in other recommender systems [29].

Borrow it Borrow trust from someone or something that already has it, such as a
colleague of the user. For example, rather than saying “when making this change,
you could also look at class X,” instead say that “when making similar changes,
your colleague Bill often looks at class X.”

Fake it Because humans are social creatures, they are influenced by social cues,
cues that could be leveraged to improve recommendation acceptance. Cialdini [5]
gives six principles of persuasion that could be leveraged in RSSEs: reciprocity,
commitment and consistency, social proof, authority, liking, and scarcity. For
example, a toolsmith could use authority in the RSSE by appealing to the fact
that the recommendation is derived from Ph.D. work that has analyzed millions
of lines of source code. The principles of Cialdini have been used successfully
outside of software engineering to improve recommendations [7].

http://www.eclipse.org
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9.2.5 Distraction

When should an RSSE make a recommendation? Many types of RSSEs make
recommendations when the user explicitly asks for it; in these cases, the answer
is clear—deliver the recommendation when it is asked for. For RSSEs where the
tool needs to take the initiative, the answer is less clear.

For some RSSEs, delivering a recommendation in the middle of a user’s work
is critical. For example, BeneFactor can suggest that a user complete a manual
refactoring by using a tool [13]. In this case, the longer the RSSE waits to make the
recommendation, the less time the user will save in taking the recommendation. If
the user completes the refactoring manually, the recommendation has lost its value.

There are downsides to delivering early (and potentially frequent) recommen-
dations as delivering a recommendation in the middle of a user’s task may be
distracting. That is, the cost of the interruption may outweigh the benefit that the
recommendation brings, assuming the user even realizes that benefit.

How can a toolsmith reduce distraction in their system? Several user interface
techniques have been proposed to help balance the need for timely recommen-
dations with the need to avoid distracting users. One is the use of negotiated
interruption [24], which informs the user that a recommendation is available without
forcing the user to acknowledge it immediately. Annotations (Sect. 9.3.1) are one
implementation of negotiated interruptions—the user can easily ignore or defer the
recommendations that these affordances contain.1 Another is the use of attention-
sensitive alerting [16], where the recommender system tries to infer when the user
is not in the middle of an important task. Carter and Dewan [4] have created such a
system that gives help to developers when it detects that they are stuck. Adamczyk
and Bailey [1] provide a good overview of techniques designed to reduce distraction
in general human–computer interaction that can be applied to RSSEs.

9.3 Strategies Used in RSSE User Interfaces

Many existing ways to present recommendations exist. We divide this presentation
into two parts: getting the user’s attention (Sect. 9.3.1) and providing further
information (Sect. 9.3.2).

9.3.1 Interfaces for Getting Users’ Attention

As we hinted at earlier, how contact is initially made between a user and an
RSSE is one major user interface decision when designing an RSSE. One of the

1We use the term affordance from the human–computer interaction field to refer to “the actionable
properties between the world and an actor” [34].
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Fig. 9.1 An example of an annotation (reproduced from Thies and Roth [42] under a Creative
Commons Attribution license). Here, an information popup is shown after the mouse has hovered
over the annotation

major distinctions is reactive versus proactive initiation [51]. Reactive initiation
means that when users are ready to receive a recommendation, they ask the tool
for it. Proactive initiation does not require the user’s invocation; instead, the tool
makes a recommendation when it is programmed to do so, perhaps at a scheduled
time or perhaps because of some event. Schafer et al. [40] call this distinction
“automatic” versus “manual” recommendations. Elsewhere, systems implemented
with proactive initiation have also been called “active help systems” [9].

Not all user interfaces fit cleanly into these two categories. For example,
Quick Fix Scout piggybacks quick-fix recommendations on top of an existing
recommender’s user interface [26]; the user does not have to explicitly ask for a
recommendation from Quick Fix Scout, but neither is one offered at a particular
time.

Proactive recommendations tend to be appropriate whenever a recommendation
is timely, that is, it may significantly improve the task that the user is doing at the
time the recommendation is made. Reactive recommendations tend to be appropriate
when the delivery of a recommendation does not impact a time-sensitive task and
when communication of a recommendation requires significant time.

Reactive recommendations tend to be easier to implement; the toolsmith provides
a button or hotkey, and users invoke it when they want a recommendation. Finding
such a button or a hotkey can be a challenge for the user [28]. There is a
significant challenge, however, in designing and implementing a proactive initiation
recommendation system. In the subsections in this section, we discuss several
existing user interfaces for facilitating proactive initiation.

Annotations. Annotations are markup on program text that associate a particular
recommendation with the segment of text that they are displayed on. Annotations are
often represented as squiggly underlines or highlights. Figure 9.1 shows an example
built by Thies and Roth [42], where a yellow underlining of the code test = null

is augmented by a text hover, providing additional information.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
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The advantage of annotations is that they are often familiar interfaces for
software developers, and many integrated development environments make it
easy to implement them. They also appear in a convenient location whenever a
recommendation is associated with a specific code location, so that when developers
look at the code, they are likely to notice the recommendation. For example, in
Fig. 9.1, the annotations work well because the recommendation speaks to the
variable declaration on which the annotation is displayed.

However, annotations are not well suited for some situations: when recom-
mendations occur frequently in source code, or when they are soft, imprecise, or
overlapping. Frequent annotations are those that would be scattered all over the
code, overloading the user to the point of ignoring the recommendations or turning
them off. For example, Fowler suggests that comments are indicators of poor
design [12], but an RSSE that annotated all comments would be excessive. Soft
recommendations are those that require human judgment, such as what it means for
a method to be “too long” [12]. Imprecise recommendations are those that could
reasonably be placed on multiple points in code; for example, a recommendation
that coupling should be reduced between classes could as easily be annotated on the
referencing class as the referenced class. Overlapping recommendations are those
that would overlap if the source code were annotated; for example, if multiple tools
all annotated the same expression, at a glance the developer would not be able to
distinguish one annotation from multiple annotations.

A special type of annotation is what might be called “document splits,” where
information is inserted between lines in a document. Figure 9.2 shows an example,
where line numbers are shown along the left-hand side; between some lines,
information about variable values is displayed. Document splits not only can
display more information initially than other kinds of annotations but also may be
significantly more distracting because they distort a user’s documents.

Icons. Icons are small graphic images that appear in a development environment.
Icons are typically displayed on the periphery of the user’s workspace, sometimes
as markers in the gutter of an editor. Figure 9.3 shows an example of the BeneFactor
tool [13] recommending that the developer should use a refactoring tool.

Icons share many of the advantages and disadvantages of annotations, but
because icons do not occupy the same screen space as code, icons may be less
noticeable than annotations when the user does not happen to glance towards them.

Affordance Overlays. Affordance overlays are annotations that appear on top
of user interface affordances, such as files in a browser or items in a dropdown
menu. For example, Fig. 9.4 shows a set of task contexts, where one source code
file is overlaid with a rounded rectangle, for the purpose of offering the user a
recommendation that this is the file they should look at next.

Affordance overlays are well suited to recommendation contexts where a rec-
ommendation is frequent or constant and where the existing development environ-
ment’s user interface should be as unperturbed as possible. Affordance overlays
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Fig. 9.2 An example of a document split from the SymDiff tool (reproduced from Lahiri et al. [20]
under a Creative Commons Attribution license)

Fig. 9.3 An example of an icon (at left) from the BeneFactor tool (reproduced from Ge et al. [13]
under a Creative Commons Attribution license)

may not work well in high-stakes situations, when a user missing a recommendation
would have a significant impact.

Popup. Popup (or toaster) recommendations are those that appear in a new user
interface layer when a recommendation is made, on top of an existing user interface.
Popups may force the user to acknowledge them, or may disappear after some
amount of time. Figure 9.5 shows a basic popup that Carter and Dewan [4] used
for helping software developers when they get stuck. Popups not only typically
disappear after a few seconds but also have various degrees of ephemerality, from
disappearing completely to leaving behind an affordance (such as an icon) that
the user can invoke to retrieve the recommendation after the popup itself has
disappeared.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
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Fig. 9.4 An example of an overlay from the Switch! user interface (reproduced from Maalej and
Sahm [22] under a Creative Commons Attribution license)

Fig. 9.5 An example of a popup (reproduced from Carter and Dewan [4] under a Creative
Commons Attribution license)

Popups may work well in situations where getting the user’s attention to deliver a
recommendation is a high priority and when recommendations are infrequent. Pop-
ups may not work well when the likelihood of the user taking the recommendation
is low.

Dashboard. A dashboard is a user interface affordance where recommendations
are made to users in a fixed, known location on the screen, typically on the periphery
of the user’s vision, allowing the user to glance at recommendations frequently and
with low commitment. Like the dashboard on a car, RSSE dashboards typically
integrate recommendations of different types or from different sources. Figure 9.6
shows an example of a dashboard, StenchBlossom, which continuously displays
information about multiple code smells while the developer works.

Dashboards may work well in situations where recommendations are continuous
and pervasive. They may not work well when a user does not have the screen real
estate to spare to the dashboard.

Email Notification. Email notifications are those that are delivered via email,
rather than into an integrated development environment. One example is email
notifications delivered by the Coverity static analysis tool [6], which can notify
developers of potential defects via email.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
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Fig. 9.6 An example of a visualization of code smells, where each “petal” represents the
magnitude of a single code smell in the code on the screen [27]. For example, the bottom-most
petal indicates a strong Large Class smell [12]

Email notifications may work well in situations where every recommendation
should be considered by a user, and in situations where collaborating with outside
entities (such as project managers) may be essential when a developer deals with
a recommendation. Because users may be notified about new emails according to
their email client preferences, email notifications are a way to provide the user with
enhanced customizability and workflows. Since email is asynchronous, email may
not work well in situations where recommendations must be handled immediately.

9.3.2 Descriptive User Interface Options

Beyond making initial contact with a user, toolsmiths often want their recommen-
dation systems to provide additional information to a user. Since providing such
information in the initial contact may be overwhelming, toolsmiths can employ
progressive disclosure [31] to give the user more information. As we discuss in
the following subsections, broadly speaking, this information can be conveyed
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Fig. 9.7 An example of a textual description from the ASIDE tool (reproduced from [52] under a
Creative Commons Attribution license)

in a textual way, as a transformation, or as a visualization. These user interface
options for providing recommendation descriptions are equally appropriate for both
proactive and reactive recommender systems.

Textual. A textual description is one that explains a recommendation in text.
Textual descriptions can be enhanced by using markup, visual emphasis, and a
tabular format. Figure 9.7 gives an example of a textual description from the ASIDE
security tool, which explains why a developer should fix an input vulnerability.
Many other tools provide textual descriptions, including the tool of Niu et al. [33]
for recommending conflict resolution, the Example Overflow tool [53] that recom-
mends relevant source code, and the Seahawk tool [2] that recommends relevant
answers from a question and answer site.

Textual descriptions may be appropriate when a recommendation requires sig-
nificant context and rationale. However, textual descriptions may not be appropriate
when users have little time to read the text.

Transformative. Transformative recommendations are those that show the user the
impact of taking a recommendation. The impact might be what happens when a
tool is invoked or when code is changed. Figure 9.8 shows an example where a
refactoring is recommended. Before this screenshot was taken, the developer had
cut the code

int string_size = string.length();
size += string_size;

out of the for loop and had begun typing findSize into that loop. The recom-
mendation system, WitchDoctor, then recommended that the developer create a
new method with the cut code using the appropriate parameters and return value.
The recommendation is made in a transformative way, because the gray code
(i.e., “size =”, “(size, string);”, etc.) previews what would happen if the user
accepts the recommendation. A more conventional implementation of transforma-
tive recommendations might simply show a preview of a change in a separate

http://creativecommons.org/licenses/by/3.0/
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Fig. 9.8 An example of a
transformative
recommendation from the
WitchDoctor tool (reproduced
from [11] under a Creative
Commons Attribution
license)

window or popup. ChangeCommander [10] is an example of a recommendation
system that takes this approach. A similar approach would be to allow the recom-
mender system to make a code change, but then allow the developer to undo that
change.

Transformative recommendations may work well in situations where the con-
sequence of a recommendation is known. They may not work so well in situations
where the consequence takes a significant amount of time for the user to understand,
since the user must essentially reverse engineer the transformation to understand the
problem that it solved.

Visualization. Visualizations convey recommendations in a graphical way.
Figure 9.9 shows a visualization of callers and callees in a piece of software.
Trumper and Dollner [46] provide an overview of visualization techniques for
RSSEs.

Visualizations may work well when recommendations are indirect and require a
software developer’s judgment. In essence, visualizations collect and display infor-
mation, with the hope that the developer will take action based on the information
that the RSSE provides. This is contrast to many textual recommendations, which
precisely tell the developer what to do.

In this section, we have discussed several user interfaces that toolsmiths can use
to present their recommendations. However, we do not want the reader to treat this
list as exhaustive—our opinion is that novel user interfaces may better fit the needs
of users. Such novel interfaces may completely discard our list of user interfaces, or
combine them in a novel way.

The user interfaces presented in this section may seem to be intuitively related
to the dimensions we describe in the prior section, but we view the two as
orthogonal issues. For example, one might assume that a popup user interface is
more distracting than an affordance overlay. However, the fact that many popups
appear distracting is inessential to that user interface; a toolsmith can reduce
the distraction of popups by using techniques such as gradual fading and more
intelligent timing.

http://creativecommons.org/licenses/by/3.0/
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Fig. 9.9 An example of a visualization from a call tree (reproduced from Holten [15] under a
Creative Commons Attribution license)

9.4 Conclusion

In this chapter we have provided a review of some desirable properties of RSSEs
and a variety of user interfaces to help implement those properties. When toolsmiths
have an idea for a user interface, how do they design the user interface that is going
to deliver recommendations in an effective way? Here, we provide some practical
advice on how to do so.

First, toolsmiths should determine their level of commitment to producing the
right user interface. At one end of the spectrum, if the toolsmiths were just creating
a proof-of-concept, the most convenient user interface may suffice—including
not having a user interface at all. For example, WitchDoctor [11] recommends
refactorings, but it was evaluated without actually showing the RSSE to developers,

http://creativecommons.org/licenses/by/3.0/
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and thus a user interface was not necessary to demonstrate effectiveness. At the
other end of the spectrum, if a toolsmith wants the tool to be widely adopted by the
user community, a stronger commitment is needed in creating the user interface.

Second, a toolsmith should choose a strategy for creating a good user interface
that is congruent with the level of commitment. Typically, such a strategy involves
two symbiotic parts: design (creating the user interface) and evaluation (determining
the goodness of the user interface). Below, we describe several strategies for
performing design and evaluation. With a low level of commitment, here are a few
appropriate design strategies:

Use another interface for inspiration. If a user interface was designed to solve
one problem, a tool that needs to solve a similar problem may be designed
with a similar interface. For example, because both compiler warnings and static
analysis warnings serve similar purposes, annotations that are used for compiler
warnings may be appropriate for static analysis warnings.

Mockups. Mockups allow an RSSE designer to create an initial idea for an RSSE
user interface, then communicate that idea graphically. A mockup may be created
using Microsoft PowerPoint, Adobe Fireworks, or simply on paper. For example,
the authors of WitchDoctor provided a user interface mockup in their paper to
give the reader an idea of what a practical implementation might look like [11].

Cognitive walkthroughs. Starting with a basic user interface design (e.g., a
mockup), a toolsmith can then “walk through” how a user would use it for the
first time by creating a number of scenarios. By pretending to use the design for
each scenario, a toolsmith can determine for which scenarios the user interface
appears to work well. Wharton et al. [48] provide an overview of the cognitive
walkthrough procedure.

With a low level of commitment, here are a few appropriate evaluation strategies:

Wizard Of Oz experiments. Wizard of Oz experiments provide a way for tool-
smiths to evaluate the user interface of RSSEs without implementing the RSSE
fully; instead, the toolsmith manually provides fake (but useful) recommen-
dations directly through the user interface. Maulsby et al. [23] provide an
introduction to the approach.

Heuristic evaluation. A heuristic evaluation is a way to evaluate RSSE user
interfaces by having a panel of experts analyze a user interface by comparing
its features to a set of known good usability heuristics. Nielsen and Molich [32]
provide an overview.

With a high level of commitment, appropriate design strategies include those that
fall under the heading of requirements elicitation and analysis. Indeed, a toolsmith
can treat RSSEs like any piece of software, and design RSSEs using methodologies
such as Participatory Design or Joint Application Design [3]. Evaluation strategies
with high levels of commitment include:

A/B testing. This type of evaluation, more commonly found in web design, gives
one sample of users one user interface, and another sample of users a slightly

http://www.adobe.com/fireworks
http://microsoft.com/powerpoint
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different user interface [17]. Across both samples, a toolsmith measures an
outcome of interest, such as the number of recommendations taken.

Controlled experiments. In controlled experiments, different user interfaces to
RSSEs are given to different groups of people and some outcome is measured,
but external variables (such as task) are controlled for [50]. As with A/B testing, a
toolsmith measures some outcome of interest, and results are compared between
groups. However, non-comparative controlled experiments can also be conducted
when no reasonable point of comparison exists.

Case studies. Case studies are like controlled experiments, except they are not
conducted in controlled conditions, but instead are conducted in a user’s usual
workspace, which improves their generalizability [37]. Data can be collected
through a number of means, such as remote instrumentation or by asking users
to keep journals.

In addition to the reference given above, Toleman and Welsh [44] provide a more
in-depth overview of evaluating design choices. LaToza and Myers [21] provide an
overview of the software engineering design process, much of which is applicable
to RSSEs. In Chap. 13, Tosun Mısırlı et al. [45] also discuss an end-to-end design
and evaluation approach called a field study.

Getting the user interface right takes time and effort, but it is also a necessary step
in creating a successful recommendation system for software engineering. In this
chapter, we have outlined factors that a toolsmith should consider when building
a user interface for an RSSE, have provided examples of choices the toolsmith
can make, and have described how user interfaces for RSSEs can be progressively
designed and evaluated.
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Chapter 10
Dimensions and Metrics for Evaluating
Recommendation Systems

Iman Avazpour, Teerat Pitakrat, Lars Grunske, and John Grundy

Abstract Recommendation systems support users and developers of various com-
puter and software systems to overcome information overload, perform information
discovery tasks, and approximate computation, among others. They have recently
become popular and have attracted a wide variety of application scenarios ranging
from business process modeling to source code manipulation. Due to this wide
variety of application domains, different approaches and metrics have been adopted
for their evaluation. In this chapter, we review a range of evaluation metrics
and measures as well as some approaches used for evaluating recommendation
systems. The metrics presented in this chapter are grouped under sixteen different
dimensions, e.g., correctness, novelty, coverage. We review these metrics according
to the dimensions to which they correspond. A brief overview of approaches to
comprehensive evaluation using collections of recommendation system dimensions
and associated metrics is presented. We also provide suggestions for key future
research and practice directions.

10.1 Introduction

Due to the complexity of today’s software systems, modern software development
environments provide recommendation systems for various tasks. These ease the
developers’ decisions or warn them about the implications of their decisions.
Examples are code completion, refactoring support, or enhanced search capabilities
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during specific maintenance activities. In recent years, research has produced a
variety of these recommendation systems and some of them have similar intentions
and functionalities [24, 60]. One obvious question is, therefore, how can we assess
quality and how can we benchmark different recommendation systems?

In this chapter, we provide a practical guide to the commonly used quantitative
evaluation techniques used to compare recommendation systems. As a first step,
we have identified a set of dimensions, e.g., the correctness or diversity of the
results that may serve as a basis for an evaluation of a recommendation system. The
different dimensions will be explained in detail and different metrics are presented
to measure and quantify each dimension. Furthermore, we explore interrelationships
between dimensions and present a guide showing how to use the dimensions in an
individual recommendation system validation.

The rest of the chapter is organized as follows: Sect. 10.2 introduces the
evaluation dimensions for recommendation systems and presents common metrics
for them. Section 10.3 explores relationships between the different dimensions.
Section 10.4 provides a description of some evaluation approaches and their
practical application and implications. Finally, conclusions are drawn in Sect. 10.5.

10.2 Dimensions

The multi-faceted characteristics of recommendation systems lead us to consider
multiple dimensions for recommender evaluation. Just one dimension and metric
for evaluating the wide variety of recommendation systems and application domains
is far too simplistic to obtain a nuanced evaluation of an approach as applied to a
particular domain.

In this chapter, we investigate a variety of dimensions that may be used to play
a significant role in evaluating a recommendation system. We list these dimensions
below according to our view of their relative evaluative importance, along with the
characteristics that each dimension is used to measure. Some of these dimensions
describe qualitative characteristics while others are more quantitative.

Correctness. How close are the recommendations to a set of recommendations
that are assumed to be correct?

Coverage. To what extent does the recommendation system cover a set of items
or user space?

Diversity. How diverse (dissimilar) are the recommended items in a list?
Trustworthiness. How trustworthy are the recommendations?
Recommender confidence. How confident is the recommendation system in its

recommendations?
Novelty. How successful is the recommendation system in recommending items

that are new or unknown to users?
Serendipity. To what extent has the system succeeded in providing surprising yet

beneficial recommendations?
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Table 10.1 Categorization of dimensions

Recommendation-centric User-centric System-centric Delivery-centric

Correctness Trustworthiness Robustness Usability
Coverage Novelty Learning rate User preference
Diversity Serendipity Scalability
Recommender confidence Utility Stability

Risk Privacy

Utility. What is the value gained from this recommendation for users?
Risk. How much user risk is associated in accepting each recommendation?
Robustness. How tolerant is the recommendation system to bias or false informa-

tion?
Learning rate. How fast can the system incorporate new information to update its

recommendation list?
Usability. How usable is the recommendation system? Will it be easy for users to

adopt it in an appropriate way?
Scalability. How scalable is the system with respect to number of users, underly-

ing data size, and algorithm performance?
Stability. How consistent are the recommendations over a period of time?
Privacy. Are there any risks to user privacy?
User preference. How do users perceive the recommendation system?

We have grouped these dimensions into four broad categories, depending on
different aspects of the recommendation system they address: recommendation-
centric, user-centric, system-centric, and delivery-centric. Table 10.1 summarizes
how each of the above dimensions can be grouped inside each category.

Recommendation-centric dimensions primarily assess the recommendations gen-
erated by the recommendation system itself: their coverage, correctness, diversity
and level of confidence in the produced recommendations. On the other hand, user-
centric dimensions allow us to assess the degrees to which the recommendation
system under evaluation fulfills its target end-user needs. This includes how trust-
worthy are the recommendations produced, degree of novelty, whether serendipitous
recommendations are a feature, the overall utility of the recommendations from
the users’ perspective, and risks associated with the recommendations produced,
again from the users’ perspective. System-centric dimensions in contrast principally
provide ways to gauge the recommendation system itself, rather than the recom-
mendations or user perspective. These include assessment of the robustness of the
recommendation system, its learning rate given new data, its scalability given data
size, its stability under data change, and degree of privacy support in the context
of shared recommendation system datasets. Finally, delivery-centric dimensions
primarily focus of the recommendation system in the context of use, including its
usability (broadly assessed) and support for user configuration and preferences.

The following subsections describe each of these dimensions in detail.
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10.2.1 Correctness

In order to be of real value, recommendation systems must provide useful results
that are close to users’ interests, intentions, or applications, without overwhelming
them with unwanted results. A key measure of this is the correctness of the
set of recommendations produced. Correctness provides a measure of how close
the recommendations given to a user are to a set of expected predefined, or
assumed correct, recommendations. This predefined set of correct recommendations
is sometimes referred to as the gold standard. The correctness of a recommendation
may refer to its alignment with a benchmark (e.g., each recommended link is in the
predefined set of correct links), or how well it adheres to desired qualities (e.g., an
increase in developer productivity).

Depending on the type of recommendations the system is generating, different
methods can be used for measuring correctness. A recommender might predict how
users rate an item, the order (ranking) of most interesting to least interesting items
for a user in a list, or which item (or list of items) is of interest to the user. In the
following subsections, we describe the most commonly used metrics for evaluating
recommendation approaches for correctness in each scenario.

Predicting User Ratings

If the recommendations produced are intended to predict how users rate items of
interest, then root-mean-squared-error (RMSE) or mean absolute error (MAE)
metrics are often used [e.g., 6,34,42,66,75]. When calculating RMSE, the difference
between actual user ratings and predicted ratings (often called the residual) should
be determined. If rui is the actual rating of user u for item i , and Orui is the predicted
value, .Orui � rui / is the residual of the two ratings. Depending on whether the
recommendation system has over- or under-estimated the rating, residuals can be
positive or negative. RMSE can be calculated by squaring the residuals, averaging
the squares, and taking the square root, as follows:

RMSE.T / D
s

˙.u;i /2T .Orui � rui /2

N
:

MAE, on the other hand, measures the average absolute deviation of predicted
ratings from user ratings:

MAE.T / D ˙.u;i /2T j Orui � rui j
N

;

where T is the test set of user item pairs .u; i / and N is the number of all ratings.
All individual residuals in MAE are equally weighted while in RMSE large errors
get penalized more than small errors. This is because the errors are squared before
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they are averaged. Therefore, if large errors are undesirable, RMSE is a more
suitable metric than MAE. Lower values of both RMSE and MAE indicate greater
correctness. RMSE is generally larger than or equal to the MAE. If both metrics are
equal, then all errors have the same magnitude.

Both RMSE and MAE can be normalized according to the rating range to
represent scaled versions of themselves:.

normalized RMSE.T / D RMSE.T /

rmax � rmin
;

normalized MAE.T / D MAE.T /

rmax � rmin
:

If the items to be tested represent an unbalanced distribution, RMSE and MAE
can be used in averaged form, depending on the evaluation (e.g., per-user or per-
item). If the RMSE of each item can be calculated separately, then the average of all
calculated RMSEs represents the average RMSE of the recommendation system.1

Example. F Consider the problem of ranking Java files returned by a recommen-
dation system for code search. Assume three files are recommended to a user with
predicted ratings of 3, 5, 5 in a 1–5 scale scoring system while the actual ratings
provided by the user are 4, 3, 5 respectively. The above metrics can be calculated as
follows.

RMSE D
r

.3 � 4/2 C .5 � 3/2 C .5� 5/2

3
	 1:291 ;

MAE D .3 � 4/C .5� 3/C .5 � 5/

3
	 0:334 ;

normalized RMSE D RMSE

5 � 1
	 0:323 ;

normalized MAE D MAE

5 � 1
	 0:08 :

G

Ranking Items

Ranking measures are used when an ordered list of recommendations is presented to
users according to their preferences. This order can be the most important, or “most
relevant,” items at the top and the least important, or “least relevant” items at the
bottom. For example, when recommending links between architecture documents

1Editors’ note: This is the notion of macroevaluation; compare microevaluation.
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and code artifacts in a source code traceability recommendation system, the most
closely related links should be shown first. Similarly, when recommending code
snippets for reuse from a source code repository in a code reuse recommendation
system, the code snippet most appropriate to the current reuse context should be
shown first.

When checking for correctness of ranking measures, if a reference ranking
(benchmark) is available, the correctness of the ranking can be measured by the
normalized distance-based performance measure (NDPM) [79]. The value returned
by NDPM is between 0 and 1 with any acceptable ranking having a distance of 0. A
ranking farthest away from an ideal ranking would have a normalized distance of 1.

NDPM penalizes a contradicting prediction twice as much as when it does not
predict an item in the ranking. It also does not penalize the system for ranking one
item over another when they have ties. Having a tie in some situations, however,
indicates that the value of the tied items is equal to the user. Therefore, ranking one
item higher than the other in a tie will produce inaccurate ranking. In situations
where ties between recommended items are to be considered, rank correlation
measures, such as Spearman’s 	 [74] or Kendall’s 
 can be used [30, 31].

For some cases, the position of recommended items in the list is important for
the application of the recommendation. For example, in a software documentation
retrieval environment, since all documentation artifacts are not of equal relevance
to their users, highly relevant documents, or document components, should be
identified and ranked first for presentation [28]. Therefore, the correctness of an item
in the ranking list should be weighted by its position in the ranking. A frequently
used metric for measuring ranking correctness, considering item ranking position,
is the normalized discounted cumulative gain (NDCG). It is calculated based on
measuring the discounted cumulative gain (DCG) and then comparing that to the
ideal ranking. DCG measures the correctness of a ranked list based on the relevance
of items discounted by their position in the list. Higher values of NDCG indicate
better ranked lists and therefore better correctness. Various approaches have been
introduced to optimize NDCG and ranking measures. Examples of these approaches
can be found in Weimer et al. [78] and Le and Smola [41].

Recommending Interesting Items

If a recommendation system is providing the items that users may like to use, a
common approach to evaluate it is to use classification metrics like precision, recall
(also called true positive rate), accuracy, false positive rate, and specificity (also
called true negative rate). These metrics have been used excessively across different
domains [e.g., 15, 17, 18, 43, 47, 80] to classify recommendations into groups, as
indicated by Table 10.2. Once the categories are defined, these metrics can be
calculated as follows:
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Table 10.2 Categorization of all possible recommendations (also called the
confusion matrix)

Recommended Not Recommended Total

Used true positives (TP) false negatives (FN) Total Used
Not Used false positives (FP) true negatives (TN) Total Not Used

Total Total Recommended Total Not Recommended Total

precision D TP

TP C FP

recall D TP

TP C FN

accuracy D TP C TN

TP C TN C FP C FN

false positive rate D FP

FP C TN

specificity D TN

FP C TN
D 1 � false positive rate

When testing for these metrics offline and on test data, a common assumption
is that items that the user has not selected are uninteresting, or useless, to other
users. This assumption can often be incorrect [70]. A user might not select an
item because they are not aware of such an item. Therefore, there can be a bias
in the categories defined by Table 10.2. Also, there exists an important tradeoff
between these metrics when measuring correctness. For instance, allowing for a
longer list of recommendations improves recall but is likely to reduce precision.
Improving precision often worsens recall [63]. The F-measure is the harmonic mean
of precision and recall, calculated as follows:

F D 2 � precision� recall

precisionC recall

It is also important to mention the cost associated with identifying false positives
(FP) and false negatives (FN). For example, it could be relatively easier to identify
FP for a user. If this is the case, calculating recall would be less costly and hence
more preferred than precision. The F-measure assumes an equal cost for both FP
and FN.2

Sometimes it is desirable to provide multiple recommendations to users. In
this case, these metrics can be altered to provide correctness measured for the
number of items being provided to user. For example, consider a code completion

2Editors’ note: The general F-measure allows for unequal but specific costs.
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recommender that can recommend hundreds of items while the user is typing
program code. Showing one item at a time would be too limited; similarly, showing
all recommendations would not be useful. If for each recommendation five items are
shown to the user, to calculate the precision of this code completion recommender
for example, precision at 5 can be used.

If using recommendations over a range of recommendation list lengths, one can
plot precision versus recall (the precision–recall curve) or true-positive rate versus
false-positive rate (the receiver operating characteristic, or ROC, curve) [26]. Both
curves measure the proportion of preferred items that are actually recommended.
Precision–recall curves emphasize the proportion of recommended items that are
preferred while ROC curves emphasize the items that are not preferred but are
recommended.

Example. F Assume that an application programming interface (API) function list
contains 100 items in total, and 20 of them are of interest to a certain user in an
API reuse recommendation system. Given that the user is presented with a list of
ten recommended items, with six being of interest and four otherwise, the precision,
recall, and F-measure metrics can be calculated as follows:

TP D 6; FP D 4; FN D 14; TN D 76 I

precision D 6

6C 4
D 0:6 ;

recall D 6

6C 14
D 0:3 ;

false positive rate D 4

4C 76
D 0:05 ;

specificity D 76

4C 76
D 0:95 ;

accuracy D 6C 76

6C 76C 4C 14
D 0:82 ;

F D 2 � 0:6 � 0:3

0:6C 0:3
D 0:4 :

G

10.2.2 Coverage

Recommendation systems make recommendations by searching available informa-
tion spaces. This recommendation is not always possible, for example when new
items or users are introduced, or insufficient data is available for particular items or
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users. Coverage refers to the proportion of available information (items, users) for
which recommendations can be made.

Consider a code maintenance recommendation system that guides developers
on where to look in a large code base to apply modifications [e.g., 59]. If such a
recommender is not capable of covering the whole codebase at hand, developers
might not be able to find the actual artifact that requires alteration. Hence, the
information overload problem and complexity of finding faults in the codebase
will still exist to a greater or lesser degree. Sometimes this is acceptable, such as
when alternative techniques, like visualization, can assist users. Sometimes this is
unacceptable, for example when the search space is too large for developers or
important parts of the code base remain un-searched, thus hindering maintenance
effort.

Coverage usually refers to catalog coverage (item-space coverage) or prediction
coverage (user-space coverage) [26]. Catalog coverage is the proportion of available
items that the recommendation system recommends to users. Prediction coverage
refers to the proportion of users or user interactions that the recommendation system
is able to generate predictions for.

A straightforward way to measure catalog coverage is by calculating the propor-
tion of items able to be recommended in a single recommendation session where
multiple recommender algorithms would be executed a number of times. Therefore,
if the set of items recommended to a user over a particular recommendation session
is Sr and Sa is the set of all available items, catalog coverage can be calculated as
follows:

catalog coverage D jSr j
jSa j :

The items available for recommendation may not all be of interest to a user.
Consider a recommendation system that finds relevant expertise to perform a
collaborative software engineering task [e.g., 50]. In such a system, if users are
looking for expertise in file processing for a Java-based project, recommending an
expert in Prolog will not be useful and should be filtered out. Ge et al. propose
weighted catalog coverage for balancing the decrease in coverage by usefulness for
users [20]:

weighted catalog coverage D jSr \ Ss j
jSs j :

where Ss is the set of items that are considered useful to users.
Similar to catalog coverage, prediction coverage can be calculated by measuring

the ratio of the number of users for whom a prediction can be made, to the total
number of users:

prediction coverage D jSp j
jSu j :
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Accordingly, by considering the usefulness of recommended items for the user as a
function f .x/ we obtain:

weighted prediction coverage D ˙i2Sp f .i/

˙j2Su f .j /
:

Ge et al. suggest using correctness and novelty metrics to calculate the usefulness
function f .x/ and the set of useful items Ss .

Situations where a new item is added to the system and sufficient information
(like ratings by other users for that item) does not yet exist is referred to as the
cold start problem. Cold start can also refer to situations where new users have
joined the system and their preferences are not yet known. For example, consider
a recommendation system that recommends solutions to fixing a bug similar to
DebugAdvisor [5]. In such a recommender the developer submits a query describing
the defect. The system then searches for bug descriptions, functions, or people
that can help the developer fix the bug. If the bug, or a similar bug, has not been
previously reported, there is no guarantee that the returned results will help resolve
the situation. Similarly, if the system has been newly implemented in a development
environment with few bug reports or code repositories, the recommendation would
not be very helpful.

Cold start is seen more often in collaborative filtering recommenders as they
rely heavily on input from users. Therefore, these recommenders can be used in
conjunction with other non-collaborative techniques. Such a hybrid mechanism was
proposed by Schein et al. [67], in which they used two variations of ROC curves to
evaluate their method, namely global ROC (GROC) and customer ROC (CROC).
GROC was used to measure performance when the recommender is allowed to
recommend more often to some users than others. CROC was used to measure
performance when the system was constrained to recommend the same number of
items to each user.

10.2.3 Diversity

In some cases, having similar items in a recommendation list does not add value
from the users’ perspectives. The recommendations will seem redundant and it takes
longer for users to explore the item space. For example, in an API recommendation
system, showing two APIs with the same non-functional characteristics may not be
useful unless it helps users gain confidence in the recommendation system. Showing
two APIs with (say) diverse performance, memory overheads, and providers could
be more desirable for the developer.

A recommendation list should display some degree of diversity in the presented
items. Candillier et al. [11] performed a case study on recommending documents to
users in which they showed that users prefer a system providing document diversity.
This allows users to get a more complete map of the information.
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Diversity could be also considered to be the opposite of similarity. If items
presented to users are too similar, they do not present diverse items and so may
not be of interest. Thus, Smyth and McClave [73] defined diversity in a set of items,
c1 : : : cn, as the average dissimilarity between all pairs of items in the itemset:

diversity.c1; : : : ; cn/ D 2

n.n � 1/

nX

iD1

nX

jDi

.1 � similarity.ci ; cj // ;

where similarity is calculated by the weighted-sum metric for item c and target
query t :

similarity.t; c/ D

nP

iD1

!i sim.ti ; ci /

nP

iD1

!i

;

and where sim.t; c/ can be a similarity heuristic based on sum, average, or minimum
or maximum distance between item pairs, and ! is the associated weight.

Since, in a fixed size recommendation list, improving diversity results in
sacrificing similarity, a strategy that optimizes this similarity–diversity tradeoff is
often beneficial. Thus, a quality metric was introduced to combine both diversity
and similarity [73]:

quality.t; c; R/ D similarity.t; c/ � relative diversity.c; R/ :

This basically specifies that the quality of item c is proportional to its similarity
with the current target query t , and to the diversity of c relative to those items so far
selected R D fr1; : : : ; rmg. This notion of relative diversity can be defined as:

relative diversity.c; R/ D
8
<

:

0 ; if R D ;
1
m

mP

iD1

.1 � similarity.c; ri //; otherwise :

To measure diversity in a recommendation list, an alternative approach is to
compute the distance of each item from the rest of the list and average the result to
obtain a diversity score. For such an average, however, a random recommender may
also produce diverse recommendations. Therefore, this needs to be accompanied
by some measure of precision. Plotting precision–diversity curves helps in selecting
the algorithm with the dominating curve [70]. Having correctness metrics combined
with diversity has an added advantage, as correctness metrics do not take into
account the entire recommendation list. Instead, they consider the correctness of
individual items. For instance, the intra-list similarity metric can help to improve
the process of topic diversification for recommendation lists [81]. In this way, the
returned lists can be checked for intra-list similarity and altered to either increase
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or decrease the diversity of items on that list as desired or required. Increasing
diversity this way has been shown to perform worse than unchanged lists, according
to correctness measures, but users preferred the altered lists [45].

Diversity of rating predictions can be measured by well-known diversity mea-
sures being used in ensemble learning [37]. These approaches try to increase
diversity for returned classification of individual learning algorithms in order
to improve the overall performance. For example, Q-statistics can be used to
find diversity between two recommender algorithms. Q-statistics are based on a
modified confusion matrix, confronting two classifiers as correctly classified versus
incorrectly classified. As a result, the confusion matrix displays the overlap of
those itemsets. Q-statistic measures are then defined to combine the elements in
the modified confusion matrix, ultimately arriving at a measure for the diversity of
the two recommender algorithms. Kille and Albayrak [32] used this approach and
introduced a difficulty measure to help with personalizing recommendations per user.
They measured a user’s difficulty by means of the diversity of rating predictions
(RMSE) and item rankings (NDCG), and used diversity metrics by pairwise Q-
statistics to fit the item ranking scenario.

Lathia et al. [40] introduced a measure of diversity for recommendations in two
lists of varying lengths. In their approach, given two sets L1 and L2, the items of
L2 that are not in L1 are first determined as their set theoretic difference. Then, the
diversity between the two lists (at depthN ) is defined as the size of their set theoretic
difference over N . This way, diversity returns 0 if the two lists are the same, and 1
if the two lists are completely different at depth N .

10.2.4 Trustworthiness

A recommendation system is expected to provide trustworthy suggestions to its
users. It has been shown that perceived usefulness correlates most highly with
good and useful recommendations [71]. If the system is continuously producing
incorrect recommendations, users’ trust in the recommender will be lost. Lack of
trustworthiness will encourage users to ignore recommendations and so decrease
the usefulness of the recommendation system. For example, in an IDE being
used for a refactoring scenario, a wrong suggestion made by the refactoring task
recommender may adversely impact large amounts of application code. If users
of such a refactoring recommendation system use a faulty recommendation and
experience the consequences, they will be less likely to use it again.

Some users will not build trust in the recommendations unless they see a well-
known item, or an item they were already aware of, being recommended [71]. Also,
explanations regarding how the system comes up with its recommendations can
encourage users to use them and build trust [72, 77].

A common approach to measure trust is to ask users in a user study whether the
recommendations are reasonable [7, 14, 25]. Depending on the usage scenario of
the recommendation system, it might be possible to check how frequently users use
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recommendations, to gain understanding of their trust [52]. For example, in a code
reuse recommender, how often the user selects and applies one of the recommended
code snippets. Or similarly, how often do users select recommendations of a code
completion recommender.

10.2.5 Recommender Confidence

Recommender confidence is the certainty the system has in its own recommenda-
tions or predictions. In online scenarios, it is possible to calculate recommender
confidence by observing environmental variables. For example, a refactoring recom-
mendation system can build confidence scores by observing how frequently users
use and apply suggested refactoring recommendations to their application.

Some prediction models can be used in calculating confidence scores. For
example, Bell et al. [6] used a neighborhood-aware similarity model that considers
similarities between items and users for generating recommendations. In their
model, a recommendation that maximizes the similarity between the item being
recommended and similar items, and the user to whom a recommendation is to
be presented and similar users, defines the most suitable recommendation. They
showed how such a metric can help identify most suitable recommendations,
according to RMSE of the predicted rating and the user’s true rating.

Cheetham and Price [13] provided an approach for calculating confidence in
case-based reasoning (CBR) systems. They proposed to identify multiple indicators
such as “sum of similarities for retrieved cases with best solution” or “similarity
of the single most similar case with best solution.” Once possible indicators are
defined, their effect on the CBR process was determined using “leave-one-out”
testing. Finally, they used Quinlan’s C4.5 algorithm [56] on the leave-one-out test
results to identify indicators that are best at determining confidence.

Recommender confidence scores can be used in the form of confidence inter-
vals [e.g., 61] or by the probability that the predicted value is true [70]. Also,
they have been used in hybrid recommendation systems for switching between
recommender algorithms [8].

10.2.6 Novelty

A novel recommendation is one that the users did not know about. Novelty is very
much related to the emotional response of users to a recommendation; as a result, it
is a difficult dimension to measure [45].

A possible approach for building a novel recommender is to remove items that the
user has already rated or used before in a recommendation list. If this information
is available, novelty of the recommender can be measured easily by comparing
recommendations against already used or rated recommendations. This requires
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keeping user profiles so that it is possible to know which user chose and rated
which items. User profiles can then be used to calculate the set of familiar items.
For example, CodeBroker [80] is a development environment that promotes reuse
by enabling software developers to reuse available components. It integrates a user
model for capturing methods that the developer already knows and thus does not
need to be recommended again.

An alternative approach for measuring novelty is to count the number of popular
items that have been recommended [70]. This metric is based on the assumption
that highly rated and popular items are likely to be known to users and therefore
not novel [48]. A good measure for novelty might be to look more generally at how
well a recommendation system made the user aware of previously unknown items
that subsequently turn out to be useful in context [26].

10.2.7 Serendipity

Serendipity by definition is “the occurrence and development of events by chance in
a happy or beneficial way” [54]. In the context of recommendation systems this has
been referred to as an unexpected and fortuitous recommendation [45]. Serendipity
and novelty are different considering the fact that there is an element of correctness
present in serendipity, which prevents random recommenders from being serendipi-
tous. Novel unexpected items may, or may not, turn out to be serendipitous. While a
random recommender may be novel, if a surprising recommendation does not have
any utility to the user it will not be classified as serendipitous, but rather as erroneous
and distracting. Therefore it is required that correctness and serendipity be balanced
and considered together [70].

Like novelty, to have a serendipitous recommender, similar recommendations
should be avoided since their expected appearance in the list will generally not
benefit the user [45]. Therefore, user profiles or an automatic or manual labeling
of pairs of similar items can help filter out similar items. The definition of this
similarity, however, should be dependent on the context in which the recommender
is being used. For example, an API recommender presenting completely unusable
APIs in the current code context is highly unlikely to promote serendipitous reuse.
A document recommender, showing unlikely but still possibly related artifacts in
a traceability recommender, may very well present the user with serendipitously
useful artifacts.

Ratability is a feature defined in accordance to serendipity. It is considered mostly
in machine learning approaches. Given that the system has some understanding of
the user profile, the ratability of a recommended item to a user is the probability that
the item will be the next item the user will consume [45]. It is assumed that items
with higher ratability are the items that the user has not consumed yet but is likely
to use in future, or the items the user has consumed but have not been added to the
user profile [44]. In other words, ratability defines the obviousness of a “user rating
an item.” Since machine-learning approaches calculate the probability of the item
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being chosen next, if the recommendation system is using a leave-one-out approach
to train the learning procedure, it is possible to calculate the ratability based on that
probability.

10.2.8 Utility

Utility is the value that the system or user gains from a recommendation. For
example, PARSEWeb [76] aims to help developers find sequences of method calls
on objects of a specific type. This helps to match an object with a specific method
sequence. In that context, the evaluation can be based on the amount of time saved
for finding such a method sequence using recommendations. Therefore, the value of
a correct recommendation is based on the utility of that item. A possible evaluation
in this context is to consider utility from a cost/benefit ratio analysis [26].

It is noteworthy that precision cannot measure the true usefulness of a recom-
mendation. For example, recommending an already well-known and used API call,
document link, code snippet, data map or algorithm will increase precision but has
very low utility [48] since such an item will probably already be known to the user.
On the other hand, for memory-intensive applications, it is sometimes beneficial to
recommend well-known items. Thus, it is fair to align the recommender evaluation
framework with utility measures in real world applications rather than overalign for
correctness.

Depending on the application domain of the recommendation system, the utility
of a recommendation can be specified by the user (e.g., in user-defined ratings)
or computed by the application itself (e.g., profit-based utility function) [1]. The
utility might be calculated by observing subsequent actions of the user, for example,
interacting with the recommendation or using recommended items.

For some applications, the position of a recommendation in a list is a deciding
factor. For example, RASCAL [43] uses a recommender agent to track usage
histories of a group of developers and recommends components that are expected
to be needed by individual developers. The components that are believed to be
most useful to current developers will appear first in the recommendation list. If
we assume that there is a higher chance for developers to choose a recommendation
among top recommended items rather than exploring the whole list, the utility of
each recommendation is then the utility of the recommended item in relation to its
position in the list of recommendations [70].

10.2.9 Risk

Depending on where the recommendation system is being used and what its
application domain is, the recommendations can be associated with various potential
risks. For example, recommending a list of movies to watch is usually less risky
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than recommending refactoring solutions in complex coding situations (unless the
movies might include inappropriate material for some audiences). Therefore, high-
risk recommendation systems must obey a set of constraints on a valid solution.
This is because false positive recommendations are less tolerable and users must be
more convinced to use a recommendation [9].

Consequently, users may approach risk differently. For example, different users
might be prepared to tolerate different levels of risk. One user might prefer using a
component which is no longer maintained but has all required features. Another user
might prefer a component that has less features but is under heavy development.
In such cases, a standard way to evaluate risk is to consider utility variance in
conjunction with the measures of utility and parameterize the degree of risk that
users will tolerate, in the evaluation [70].

Another aspect of risk involves privacy. If the system is working according to
user profiles, collecting information from users to create that profile introduces the
risk of breaching users’ privacy [57]. Therefore, it should be ensured that users are
aware and willing to take that risk. For example, when recommending developers
based on expertise for outsourcing tasks, many other factors will also need to be
considered. Privacy will be discussed more in Sect. 10.2.15.

10.2.10 Robustness

Robustness is the ability of a recommendation system to tolerate false information
intentionally provided by malicious users or, more commonly, to tolerate mistaken
information accidentally provided by users. Mistakes made by users may include
asking recommender to analyze documents in incorrect formats, mistakenly rating
items, making mistakes in the user profile specification, and using the recommender
in the wrong context or for the wrong tasks.

In order to evaluate the robustness of a system against attacks, O’Mahony et al.
[53] compared prediction ratings before and after false information is provided and
analyzed the prediction shift that reflects how the prediction changed afterwards.
The prediction shift of item i (�i ) and its average (�i) can be defined as:

�i D
X

u2U

OOrui � Orui

jU j ; (10.1)

�i D
X

i2I

�i

j I j ;

where Or and OOr are the predicted ratings before and after false information (respec-
tively), U is a set of users, and I is a set of items.

A large shift, however, may not always affect performance of the system if the
false information does not alter the items recommended to users. This situation may
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occur if actual rating of particular items are ranked so low that the mistakes still
cannot push them to the top of recommended items. Many studies [e.g., 49, 64, 69]
have also discussed and employed other metrics, including average hit ratio and
average rank, to evaluate robustness. Average hit ratio measures how effective the
misleading information is to push items into a recommended list while average rank
measures the drop of item ratings outside the recommended list. Hit ratio and rank
for item i , and their averages, can be defined as:

hit ratio.i/ D
X

u2U

Hui

jU j ;

rank.i/ D
X

u2U

rank�.u; i /
jU j ;

average hit ratio D
X

i2I

hit ratio.i/

j I j ; and

average rank D
X

i2I

rank.i/

j I j ;

where Hui is 1 if item i appears in the list of recommended items of user u
and 0 otherwise. The operator rank�.u; i / returns the position of item i in the
unrecommended list of user u sorted in a descending order.

10.2.11 Learning Rate

Learning rate is the speed at which a recommendation system learns new infor-
mation or trends and updates the recommended item list accordingly. A system
with high learning rate will be able to adapt to new user preferences or interests of
existing users to provide useful recommendations within a short period of learning
time. For example, an API recommendation system may have a high learning rate
if every time a user rates a recommended item the ranking index and calculations
are immediately updated. In comparison, a code recommendation system may have
a low learning rate if the indexing of the code repository can only be undertaken
sporadically due to high overheads.

Although a fast learning rate can cope with quick shifts in trends, it may also give
up some prediction correctness since the new trend that the system recommends
might not perfectly match a user’s interests. A slow learning rate can also affect the
system utility if it fails to catch up with trends and cannot provide a new set of useful
recommendations.

The evaluation of learning rate can be done by measuring (1) the time that takes
the system to regain its prediction correctness when user interests drift, (2) the time
to reach a certain level of correctness for new users, or (3) the prediction correctness
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that the system can achieve within a limited learning time. Koychev and Schwab
[35] measured and plotted the prediction correctness of a recommendation system
over time and assessed how fast their algorithm adapted to changes. To evaluate the
learning rate for new users, Rashid et al. [58] evaluated different algorithms that
learn user preferences during the sign-up process. Each algorithm presents users
with a list of initial items to be rated and learns from the given ratings. After the
sign-up process and the learning phase is completed, predictions for other items are
made and the accuracies of the algorithms are measured and compared.

10.2.12 Usability

In order for recommendation systems to be effective, their target end users must
be able to use them in appropriate ways. They must also adhere to the general
principles of usability. They must be effective, efficient, and provide some degree of
satisfaction for their target end users [51].

Recommendation systems typically manifest in some way via a user interface.
The contents presented by this user interface play an important role in accep-
tance of the recommendation [55]. This user interface may simply be an in situ
suggestion to the user in the containing application. More commonly, a list of
recommendations, often ranked, is provided to the user on demand. Additionally,
many recommendation systems require configuration parameters, user preferences,
and some form of user profile to be specified. All of these interfaces greatly impact
on the usability of the recommendation system as a whole. For example, presenting
the user with an overwhelmingly large list of unranked or improperly ordered items
is ineffective and inefficient. Presenting the user with very complicated or hard to
understand information is also ineffective and impacts satisfaction. Satisfaction and
efficiency are reduced if users are not allowed to interact with recommended items,
for example go to target document adversely, or if the system is slow in producing
a set of recommendations. These factors of recommendation systems are generally
evaluated through user studies [55, 71, 72].

10.2.13 Scalability

One of the most important goals of a recommendation system is to provide online
recommendations for users to navigate through a collection of items. When the
system scales up to the point where there are thousands of components, bug reports,
or software experts to be recommended, the system must be able to process and
make each recommendation within a reasonable amount of time. If the system
cannot otherwise handle a large amount of data, other dimensions will have to be
compromised. For instance, the algorithm might generate recommendations based
on only a subset of items instead of using the whole database. This reduces the
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processing time but consequently also reduces its coverage and correctness. Many
examples exist of recommendation systems that work well on small datasets but
struggle with large item sets or large numbers of users. These include most early
API and code recommenders, many existing code or database search and rank result
recommenders and complex design or code refactoring recommenders.

The scalability problem can be divided into two parts: (1) the training time of
the recommendation algorithm and (2) the performance of the system or throughput
when working with a large item database. The time that is required to train the
algorithm can be evaluated by training different algorithms with the same dataset
or by training them until they reach the same level of prediction correctness
[21, 29]. The performance of the system can be evaluated in terms of throughput—
the number of recommendations that the system can generate per second [16,23,65].
Performance (in terms of number of recommendations) can also adversely impact
the usability of the recommendation system as response time may become too slow
to be effective for its users.

10.2.14 Stability

Stability refers to the prediction consistency of the recommendation system over a
period of time, assuming that new ratings or items added during that period are in
agreement with the ones already existing in the system. A stable recommender can
help increase user trust as users will be presented with consistent predictions. The
prediction that changes and fluctuates frequently can cause confusion to the users
and, consequently, distrust in the system.

Stability can be measured by comparing a prediction at a certain point in time
with a point when new ratings are added. Adomavicius and Zhang [2,3] carried out
a stability evaluation by training the recommendation algorithm with the existing
ratings and making a first prediction. After new ratings during the next period are
added, the algorithm is retrained with this new dataset. It then makes a second
prediction. Similar to robustness, the prediction shift (10.1) can be calculated after
a new set of ratings are added.

10.2.15 Privacy

Recommendation systems often record and log user interaction into historical user
profiles. This helps personalize recommendations and improve understanding of
user needs. Recording this information introduces a potential threat to users’ privacy.
Therefore, some users might request their personal data to be kept private and not
disclosed. To secure data, some approaches have proposed cryptographic solutions,
or removing the single trusted party having access to the collected data [e.g., 4, 12].
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Despite these efforts, it has been demonstrated that it is possible to infer user
histories by passively observing a recommender’s recommendations [10].

Indeed, introducing a metric for measuring privacy is a difficult task. A feasible
approach is to measure how much information has been disclosed to third parties
as used in web browsing scenarios [36]. The differential privacy measure is a
privacy definition based on similar principles [19]. It indicates that the output of a
computation should not permit the inference of any record’s presence in, or absence
from, the computation’s input. The definition is as follows. Consider a randomized
function K with its input as the dataset and its output as the released information.
Also consider datasets D1 and D2 differing on at most one element. Then function
K gives �-differential privacy if, for all S � range.K /:

PrŒK .D1/ 2 S� � exp.�/ � PrŒK .D2/ 2 S� : (10.2)

In the context of recommendation systems, however, privacy should be measured
in conjunction with correctness since keeping information from the system, or
third party recommendation system, has a direct effect on correctness of the
recommendation system. This difference can be shown by plotting correctness
against the options available for preserving privacy. For example, McSherry and
Mironov [46] demonstrated their privacy preserving application by plotting RMSE
versus differential privacy.

There are still open questions and areas to explore regarding how privacy can
affect recommendation systems and how to measure its effects [39]. Consider multi-
user and multi-organizational situations such as open source applications where
API, bug triage, code reuse, document/code trace, and expertise recommenders may
share repositories. Capturing user recommender interactions may enhance recom-
mender performance for all of these domains, however, exposing the recommended
items, user ratings and recommender queries all have the potential to seriously
compromise developer and organizational privacy.

10.2.16 User Preferences

We have presented a number of measures to evaluate the performance of recommen-
dation systems. The bottom line of any recommendation system evaluation is the
perception of the users of that system. Therefore, depending on application domain,
an effective evaluation scenario could be to provide recommendations regarding the
selection of algorithms and ask users which one they prefer. Moreover, it has been
shown that some metrics (although useful for comparison) are not good measures
of user preference. For example, what MAE measures and what really matters
to users contrast since, due to the decision supportive nature of recommendation
systems, the exact predicted value is of far less importance to a user than the fact
that an item is recommended [39]. A number of recent document/code link recovery
recommenders incorporate concurrently used algorithms that generate multiple sets
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of recommendations that can be presented either separately or combined. Many
systems allow users to configure the presentation of results, ranking scales, filters on
results, number of results provided, and relative weighting of multiple item features.

It should be taken into consideration, however, that user preferences are not
binary values. Users might prefer one algorithm to another [70]. Therefore, if testing
user preferences regarding a group of algorithms, a non-binary measure should be
used before the scores are calibrated [33]. Also, new users should be separated in
the evaluation from more experienced users. New users may need to establish trust
and rapport with a recommender before taking advantage of the recommendations
it offers. Therefore, they might benefit from an algorithm which generates highly
ratable items [45].

10.3 Relation Between Dimensions

To have an effective evaluation, relationships between dimensions should also be
considered. These relationships describe whether changing a dimension affects
other dimensions. We have captured these relationships in Table 10.3, depicting the
relationships between dimensions for overall performance of the recommendation
system. Each cell in this table depicts relationships between one dimension when
compared to another. If changes to a dimension are in accordance with another
dimension, i.e., if improving that dimension improves the other, it has been shown
by ˇ. If a dimension tends to adversely impact another, it is shown as a �.
Dimensions that tend to be independent are shown with blank cells. Below we
summarize some of these recommender dimension interrelations that are not already
mentioned in previous sections.

Coverage can directly affect correctness, since the more data available for gen-
erating recommendations, the more meaningful the recommendations are. Hence
correctness increases with increasing coverage [22]. Coverage is also closely related
to serendipity. Not every increase in coverage increases serendipity; however, an
increase in serendipity will lead to higher catalog coverage. On the other hand,
greater correctness dictates more constraints and therefore decreases serendip-
ity [20]. The same is true for risk, i.e., if recommendations are being used in high risk
environments, more constraints should be considered. This decreases serendipity,
novelty, and diversity but increases correctness, trust, and utility.

High usability increases the amount of trust that users have in the recommenda-
tion system, especially when recommendations are transparent and accompanied by
explanations. Improving privacy forces recommendation systems to hide some user
data and hence affects the correctness of the recommendation.

Novel recommendations are generally recommendations that are not known to
the user. It is not always a requirement for a novel recommendation to be accurate.
Improving novelty by introducing randomness may decrease correctness. Also,
improving novelty by omitting well-known items will affect correctness. Therefore,
increasing novelty may decrease correctness. The same is true for diversity.



www.manaraa.com

266 I. Avazpour et al.

Table 10.3 Relationships between metrics

ˇ indicates a direct relationship, while ˝ indicates an adverse relationship

Scalability and learning rate directly affect correctness since improving them
allows faster adaptation of new items and users, thus resulting in better correctness.
Improving scalability at the same time also improves coverage.

Improving robustness prevents mistaken information from affecting recom-
mendations and hence improves user trust [38]. It will, however, result in true
recommendations being adopted more slowly, therefore reducing short-term cor-
rectness.

It is noteworthy that from the metrics presented in this table, risk could have been
categorized separately. Regardless of how the recommendation system performs,
risks involved with the application are the same, i.e., although having a better
performing recommendation system helps to minimize the risk associated with
“selecting a recommendation,” it does not change the fact that risks for that
particular application exist in general.

The true relationships between metrics are more nuanced than can be represented
in a two-dimensional table. For example, improving coverage directly improves
correctness and increasing novelty might improve coverage. Thus, improving
novelty can be considered to indirectly improve correctness, contradicting the table.
Therefore, a better framework or standard for understanding these relationships is
needed and should be considered for future research.
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Table 10.4 Summary of metrics

Dimension Metric/Technique Type(s)

Correctness

Ratings: root-mean-square-error, normalized RMSE,
mean absolute error, normalized MAE

Ranking : normalized distance-based performance mea-
sure, Spearman’s r , Kendall’s t , normalized discounted
cumulative gain

Classification : precision, recall, false positive rate, speci-
ficity, F-measure, receiver operating characteristic curve

quantitative

Coverage catalog coverage, weighted catalog coverage, prediction
coverage, weighted prediction coverage

quantitative

Diversity
diversity measure, relative diversity, precision–diversity
curve, Q-statistics, set theoretic difference of recommen-
dation lists

quantitative

Trustworthiness user studies qualitative

Confidence neighborhood-aware similarity model, similarity indica-
tors

qualitative/
quantitative

Novelty comparison of recommendation lists and user profiles,
counting popular items

qualitative/
quantitative

Serendipity comparison of recommendation lists and user profiles,
ratability

qualitative/
quantitative

Utility profit-based utility function, study user intention, user
studies

qualitative/
quantitative

Risk depends on application and user preference qualitative

Robustness prediction shift, average hit ratio, average rank quantitative

Learning rate correctness over time quantitative

Usability user studies (survey, observation, monitoring)
qualitative/
quantitative

Scalability training time, recommendation throughput quantitative

Stability prediction shift quantitative

Privacy differential privacy, RMSE vs. differential privacy curve
qualitative/
quantitative

User preference user studies
qualitative/
quantitative

10.4 Evaluation Approaches and Frameworks

Table 10.4 summarizes the set of evaluation metrics and technique dimensions
described earlier according to their corresponding dimension and type(s). Some of
the dimensions are qualitative assessments while others are quantitative.

The most basic evaluation of a recommendation system is to use just one or
two metrics covering one or two dimensions. For example, one may choose to
evaluate and compare a recommender using correctness and diversity dimensions.
When possible, the selected dimensions can be plotted to allow better analysis.
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The selection of dimensions can be chosen according to a particular recommender
application. As mentioned in Sect. 10.3, however, there is always a tradeoff present
between the dimensions of a recommendation system that should be considered
when evaluating the effectiveness of recommendation systems. Also, the multi-
faceted characteristics of these systems, and unavailability of a standard framework
for evaluation, and in many case suitable performance benchmarks, has directly
affected the evaluation of different systems by dimensions. In addition, many
metrics require significant time and effort to properly design experiments, and to
capture and analyze results. Availability of end users, suitable datasets, suitable
reference benchmarks, and multiple implementations of different approaches are
all often challenging issues.

However, some new approaches are beginning to emerge to help developers and
users decide between different recommender algorithms and systems. An example
of this is an approach that helps users define which metrics can be used for
evaluation of the recommendation system at hand [68]. It proposes to consider
evaluation goals to ensure the selection of an appropriate metric. An analysis of
a collection of correctness metrics is provided as evidence regarding how different
goals can affect the outcome of the evaluation.

Hernández del Olmo and Gaudioso [27] propose an objective-based framework
for the standardization of recommendation system evaluations. Their framework
is based on the concept that a recommendation system is composed of interactive
and non-interactive subsystems (called guides and filters respectively). The guide
decides when and how each recommendation is to be shown to users. The filter
selects interesting items to recommend. Accordingly, a performance metric P has
been introduced as the quantification of the final performance of a recommendation
system over a set of sessions. P is defined as the number of selected relevant
recommendations that have been followed by the user over a recommendation
session.

A more recent approach introduced a multi-faceted model for recommender
evaluation that proposes evaluation along three axis: users, technical constraints, and
business models [62]. This approach considers user, technical, and business aspects
together and evaluates the recommender accordingly. However, considerable further
work is needed to enable detailed evaluation of recommendation system against
many of the potential metrics itemized in Table 10.4.

10.5 Conclusion

In this chapter, we have presented and explained a range of common metrics used
for the evaluation of recommendation systems in software engineering. Based on a
review of current literature, we derived a set of dimensions that are used to evaluate
an individual recommendation system or in comparing it against the current state
of the art. For the dimensions, we have provided a description as well as a set of
commonly used metrics and explored relationships between the dimensions.
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We hope that our classification and description of this range of available
evaluation metrics will help other researchers to develop better recommendation
systems. We also hope that our taxonomy will be used to improve the validation of
newly developed recommendation systems and clearly show in specific ways how a
new recommendation system is better than the current state of the art. Finally, the
content of this chapter can be used by practitioners in understanding the evaluation
criteria for recommendation systems. This can thus improve their decisions when
selecting a specific recommendation system for a software development project.
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Chapter 11
Benchmarking

A Methodology for Ensuring the Relative Quality
of Recommendation Systems in Software Engineering

Alan Said, Domonkos Tikk, and Paolo Cremonesi

Abstract This chapter describes the concepts involved in the process of
benchmarking of recommendation systems. Benchmarking of recommendation
systems is used to ensure the quality of a research system or production system
in comparison to other systems, whether algorithmically, infrastructurally, or
according to any sought-after quality. Specifically, the chapter presents evaluation
of recommendation systems according to recommendation accuracy, technical
constraints, and business values in the context of a multi-dimensional benchmarking
and evaluation model encompassing any number of qualities into a final comparable
metric. The focus is put on quality measures related to recommendation accuracy,
technical factors, and business values. The chapter first introduces concepts related
to evaluation and benchmarking of recommendation systems, continues with an
overview of the current state of the art, then presents the multi-dimensional approach
in detail. The chapter concludes with a brief discussion of the introduced concepts
and a summary.
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11.1 Introduction

Benchmarking is a structural approach to quality engineering and management [7];
essentially it is a comparison process aimed at finding the best practice for a given
well-specified problem. The concept of benchmarking originated in optimizing
business processes by investigating and analyzing industry standards, comparing
them to the one applied in the investigator’s own organization, and creating an
implementation plan with predefined goals and objectives to improve the quality
and performance of the evaluated process. In the last few decades, benchmarking has
also become very popular in scientific research and software engineering, driven by
the need to identify best-in-class approaches or algorithms for scientific problems,
and to facilitate various stages of the software development lifecycle, including
automated code-testing [18].

The process of traditional benchmarking is built up from the following steps:
(1) design and target specification, (2) data collection, (3) evaluation and analysis,
and (4) implementation of improvements. Scientific benchmarking, on the other
hand, mainly focuses on providing a means for comparison and exploration of novel
ideas on a dataset collected for the given purpose,1 and puts less emphasis on the
implementation of the improvements in an industrial environment.

Due to their origins in the research community, recommendation systems are
primarily evaluated using accuracy-oriented metrics, such as precision, recall, root-
mean-squared error, etc. [22]. As a typical example, we refer to the Netflix Prize
competition [31] (see more details in Sect. 11.2). However, these measures only
represent one type of performance, namely the objective recommendation accuracy,
not taking into consideration software engineering and business aspects, technical
constraints, and subjective user-centric values, thus creating an unbalanced focus
on only one dimension of the evaluation spectrum. This lack of balance makes
benchmarking of recommendation systems in different domains and settings diffi-
cult, if not impossible. The business and technical constraints are largely neglected
in traditional algorithmic evaluation [22]. Even in cases where multi-objective eval-
uation is applied, the evaluation often focuses only on recommendation accuracy
[e.g., 24]. The broadly accepted philosophy is that the higher the accuracy (or
lower the error) metrics are, the better the recommendation system performs [22].
In order to objectively estimate the utility of a recommendation system, from all
perspectives, the complete spectrum of recommendation quality should be evaluated,
especially in contexts where accuracy is not necessarily the ultimate goal.

In real-world scenarios, business- and technology-centered measures are just as
important, if not more so, than accuracy alone. An evaluation model incorporating
all three values was presented by Said et al. [37]. This model, if applied in
the context of a real-world, market-driven recommendation system, simplifies the

1See for example the UCI Machine Learning Repository that contains a large selection of machine
learning benchmark datasets. Recommendation-system-related benchmark datasets can also be
found in KONECT, e.g., under category ratings.

http://konect.uni-koblenz.de/
http://archive.ics.uci.edu/ml/
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algorithm-to-algorithm comparison of recommendation systems. Especially from
a software engineering perspective, evaluating technical constraints is particularly
important in order to create a well-functioning system.

Throughout this chapter, we use the evaluation model outlined by Said et al. [37]
to discuss and reason whether the most important challenges are related to large-
scale, real-time, business-driven, or highly accurate recommendations. The context
of the recommendation is often related to the setting in which the recommendation is
to be presented, and to what quality is important in the specific setting. For instance,
below we present a few examples where recommendation systems can be (and
often are) deployed, and, given the diversity of the services, where the sought-after
qualities in each service need not to be the same.

Video/Music-on-Demand. Video-on-demand (VOD) and music-on-demand
(MOD) are services where multimedia content is provided to the users on request;
examples of these include Netflix and Spotify. The difference from other media,
e.g., radio or live TV, is the user-driven availability of the content. This instant
availability of content creates a certain context in which the recommendations
are most often consumed directly and not stored for later viewing, listening,
etc. Additionally, there is a business context in which a specific item might be
a preferred recommendation from the provider based on infrastructure, revenue, or
other factors. It should however still represent a suitable recommendation from the
user’s perspective.

Linear TV. In linear (or traditional) television (TV) where the delivery of content is
driven by one provider to a large audience without any personalization, the selection
of items is limited and quickly changing. In this context, it is imperative for the
recommendation system to adapt to the currently available items. However, the
user- and business-focused aspects should not be overlooked as the utility of quickly
updating but poorly performing recommendation systems is low both for the user
and for the service operator.

Webshop. In a webshop setting, the user- and business-focused aspects of recom-
mendations might be different, since users seek quality products at low prices, while
the business is focusing on maximizing the revenue/profit per user visit. The latter
could potentially be achieved by recommending quality and more expensive/larger
margin products. Therefore the utility of the recommender is different for the two
aspects, which may necessitate the implementation of a recommendation algorithm
that trades off between the different goals.

News Portal. On a news portal, users seek interesting content to read, and their
“currency” is the time they spend on the site, visit frequency, and the number of
pages visited. Since users’ browsing time is usually limited per visit, the quality of
recommendations, and therefore the user satisfaction and loyalty is often mirrored in
increased visit frequency [28]. On the service provider’s end, the business goal is to
increase the total number of page views, since the ad display-based business model
scales with page views. Alternatively, pay-per view or subscriber content could

http://www.spotify.com
http://www.netflix.com
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provide an additional revenue stream; in such a case the recommender algorithm
should also identify those users that are willing to pay for the content. An additional
user-focused quality measure is the diversity of the recommendation that also
requires good adaptability from the recommendation system to capture, in real-time,
the user’s actual interest.

Internet Marketplaces. On Internet marketplaces, such as auction sites (e.g.,
eBay) or classified media sites (e.g., leboncoin, craigslist), the perceived quality
of recommendations from the user depends on how quickly the algorithm can adapt
to the actual need of the visit. On the business side, it is important to keep users
engaged and active in using the service while being able to sell value-added services
for advertisers/sellers. Therefore the recommendation algorithm should again trade
off between user satisfaction and the site’s business goals.

The requirements on the recommendation algorithms deployed in each example
are clearly different; the implication that follows is that they should also be evaluated
differently. The multidimensional evaluation model presented in this chapter allows
for this, while still keeping a reasonable means of comparison.

11.2 Benchmarking and Evaluation Settings

We explain the process of benchmarking based on the Netflix Prize (NP) example,
which is by far the most widely known benchmarking event and dataset for
recommendation systems. Recall that the benchmarking process has the following
steps: (1) design and target specification, (2) data collection, (3) evaluation and
analysis, and (4) implementation of improvements.

Netflix initiated the contest in order to improve their in-house recommenda-
tion system—called Cinematch—that provides movie recommendations to their
customers. Although the ultimate goal of Netflix was to improve or replace
Cinematch with a recommendation system that would provide more satisfactory
recommendations to the end-users and thus improve their business,2 they selected
a less sensitive and essentially simpler task as a proxy to benchmark algorithms of
the participants.

At Netflix, users can express their movie preferences by rating movies on a 1–5
scale. The aim of the competition was to improve the prediction accuracy of user
ratings, that is, participants in the competition had to create algorithms to predict
a set of unreported user ratings (called the Qualifying set), using a set of reported
user ratings (called the Training set). Netflix released a large rating dataset (for
comparison to other datasets, see Table 11.1) as follows [43] (see Fig. 11.1 for an
overview). Netflix selected a random subset of users from their entire customer base

2Better recommendations postpone or eliminate the content glut effect [32]—a variation on the idea
of information overload—and thus increases customer lifetime, which is translated into additional
revenue of Netflix’s monthly plan based subscription service.

http://www.craigslist.com
http://www.leboncoin.fr
http://www.ebay.com
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Table 11.1 Benchmark datasets for recommendation tasks. Starred datasets contain implicit
ratings; density is given as a percentage

Name Domain Events Users Items Density

Jester jokes 4,136,360 73,421 100 56.34
Book-crossing book 1,149,780 278,858 271,379 0.001
MovieLens 100k movie 100,000 943 1682 6.30
MovieLens 1M movie 1,000,000 6040 3900 4.25
MovieLens 10M movie 10,000,000 71,567 10,681 1.31
Netflix movie 100,480,507 480,189 17,7 1.17
CAMRa2010 (Moviepilot) movie 4,544,409 105,137 25,058 0.002
CAMRa2011 (Moviepilot) movie 4,391,822 171,67 29,974 0.001
CAMRa2010 (Filmtipset time) movie 5,862,464 34,857 53,6 0.003
CAMRa2010 (Filmtipset social) movie 3,075,346 16,473 24,222 0.008
Last.fm 1K* music 19,150,868 992 176,948 10.91
Last.fm 360K* music 17,559,530 359,347 294,015 0.016
Yahoo Music (KDD Cup 2011) music 262,810,175 1,000,990 624,961 0.042
Mendeley* publications 4,848,724 50 3,652,285 0.002
LibimSeTi dating 17,359,346 135,359 168,791 0.076
Delicious tags 420,000,000 950 132,000,000 3 · 10−6

Koders-log-2007 code search 5M + 5M 3,187,969 see note 5 see note 5

Fig. 11.1 The benchmark dataset of the Netflix Prize [adapted from 6]
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with at least 20 ratings in a given period. A Hold-Out set was created from the 9
most recent ratings of each of these users,3 consisting of about 4.2 million ratings.
The remaining data formed the Training set. The ratings of the Hold-Out set were
split randomly into three subsets of equal size: Quiz, Test, and Probe. The Probe set
was released with ratings, primarily to allow the competitors to self-evaluate their
algorithms, although they also used this data for training purposes in submitting the
final predictions. The Quiz and Test sets formed the Qualifying set for which the
actual ratings were withheld in order to evaluate competitors. The Quiz/Test split of
the Qualifying set was unknown to the public. Netflix adopted root-mean-squared
error (RMSE) as their evaluation measure to compare the algorithms. Participants
had to submit only the predictions on the Qualifying set, not their algorithms. The
organizers returned the RMSE of the submissions on the Quiz set, which is also
reported on a public leaderboard. The RMSE on the Test set was withheld by
Netflix, in order to retain some data for which competitors were unable to adjust
their algorithms.

In 2009, the 1 million dollar prize was awarded to an ensemble algorithm, which
successfully outperformed Cinematch by more than 10 % at RMSE. However, in the
end the ensemble was not deployed by Netflix; one of the reasons behind this was
simply that it would not scale-up to the amount of data available in the production
environment [2]. The inability to deploy this ensemble algorithm should serve as a
motivation as to why recommendation systems need to be evaluated in terms other
than recommendation accuracy only. Because real-world recommendation systems
are software tools, considering software engineering related parameters at their
evaluation is essential.

Other benchmarking events, organized by academia and industry—e.g., KDD
Cup 2011 [25], various installations of the ECML/PKDD Discovery Challenge, the
Overstock RecLab Prize, etc.—all focused on one dimension of the recommenda-
tion quality, namely, recommendation accuracy. Even though a considerable amount
of time has passed since the Netflix Prize competition, recommendation systems
are still evaluated and benchmarked in a similar fashion. Recent examples of this
include the 2013 Recommender Systems Challenge where again only RMSE was
used for comparing the algorithms to one another.

In the remaining part of this section, aspects of traditional evaluation (e.g.,
accuracy) are presented, followed by a description on how these can be applied in
the multi-dimensional benchmarking model also presented in this section. A more
in-depth perspective of evaluation metrics is provided by Avazpour et al. [3] in
Chap. 10.

3The date-based partition of the NP dataset into Training/Testing sets reflects the original aim
of recommendation systems, which is the prediction of future interest of users from their past
ratings/activities.

http://2013.recsychallenge.com
http://overstockreclabprize.com/
http://ceur-ws.org/Vol-497/
http://www.netflixprize.com/leaderboard
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11.2.1 Datasets

Traditional evaluation of recommendation systems (based on accuracy metrics)
requires a dataset on which the recommendation algorithms can be trained and
validated. These range from user–item interaction datasets used for item recom-
mendation, e.g., the Netflix Prize dataset, to more engineering-focused datasets
containing API changes across versions of software or source code search queries
and downloads, e.g., the Koders-log [4]. Table 11.1 shows some of the most
common datasets used for these purposes together with their domains and sizes.4

Looking at attributes such as density, it is reasonable to believe that recommenda-
tion accuracy results on (for example) the Jester dataset are not directly comparable
to (for example) the Delicious dataset. Similarly, comparing the scalability or speed
of an algorithm using the Movielens 100k dataset and the KDD Cup 2011 dataset
would not be fair either.5

11.2.2 Toolkits

When benchmarking recommendation algorithms, one of the aspects that affects
factors such as scalability or even the accuracy of the system is the implementation of
the algorithm itself. There exist several open source frameworks that are commonly
used in research and industry; some of these are specialized on one or a few
specific algorithms or recommendation contexts, whereas others provide very broad
machine learning (ML) and natural language processing (NLP) libraries.

Table 11.2 shows some of the most common recommendation frameworks
currently available together with their specific features.6 Even though most of these
frameworks have similar implementations of the most common algorithms (e.g.,
k-nearest neighbors [15]), due to the differences of the implementation languages,
running time and memory usage may vary even if the same datasets, algorithms, and
hardware are used.

11.2.3 Accuracy and Error Metrics

Traditional metrics measure concepts related to dataset-specific factors; often
these are measures found in or based on similar concepts in statistics, radiology,

4Additional recommendation datasets can be found at the Recommender Systems Wiki.
5Due to the different context of this dataset, no number of items is given as the dataset instead
contains two sets of event types (search and download). A density cannot be calculated as there is
no fixed set of items.
6See mloss.org for additional general ML software and the Recommender Systems Wiki for
recommendation-specific software.

http://recsyswiki.com/wiki/Category:Software
http://www.mloss.org/
http://recsyswiki.com/wiki/Category:Dataset
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Table 11.2 Common frameworks used for recommendation both in research and
production systems

Name License Language Type

CofiRank MPL C++ collaborative filtering
Crab BSD Python recommendation
EasyRec GPL v2 Java recommendation
GraphLab Apache 2.0 C++ high performance computation
Lenskit LGPL v2.1 Java recommendation
Mahout Apache 2.0 Java general ML
MyMediaLite GPL C# & Java recommendation
PREA BSD Java CF algorithms
Python-recsys N/A Python recommendation
RapidMiner AGPL Java ML, NLP & data mining
Recommendable MIT Ruby recommendation
Recommender 101 Custom Java recommendation
Recommenderlab GPL v2 R recommendation
Svdfeature Apache 2.0 C++ matrix factorization
Waffles LGPL C++ ML and data mining

medicine, etc. [21]. We overview a few such metrics here; for a more complete
overview of recommendation evaluation measures, see Chap. 10 [3].

Classification Accuracy

Classification accuracy metrics measure to what extent a recommendation system
is able to correctly classify items as interesting or not. Examples are precision and
recall, which require the ratings to be mapped onto a binary relevance scale (relevant
vs. not relevant). The number of recommendations returned by the recommender
algorithm relates to precision and recall. Recall is typically used with a fixed
number of recommended items (5–50); this setting reflects the online usage,
when users receive a limited number of recommendations during a visit. Other
classification accuracy metrics are the mean average precision [41], the receiver
operating characteristic (ROC) curve, area under curve (AUC) [22], customer ROC
(CROC) [40], etc.

Predictive Accuracy Metrics

Predictive accuracy metrics measure how a recommendation system can predict
the ratings of users. Since rated items have an order, predictive accuracy metrics
can also be used to measure a system’s ability to rank items. The mean absolute
error (MAE) and the root-mean-squared error (RMSE) are widely used metrics, and
several variants of these exist. Several authors [9,22] report that predictive accuracy
metrics are not always appropriate: errors in the recommendation systems’ predicted
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ratings only affect the user when it results in erroneously classifying an interesting
item as not interesting or vice versa.

Coverage Metrics

Coverage metrics measure the percentage of items for which the recommendation
system can make predictions or recommendations [48]. A recommendation system
cannot always generate a prediction since there might be insufficient data. There are
two types of coverage identified by Herlocker et al. [22]: prediction coverage, the
percentage of items in the input domain of the recommendation system for which
it is able to make recommendations; and catalog coverage, the percentage of items
in the output range of the recommendation system that it will ever present within
a recommendation. A higher coverage means that the system is able to support
decision making in more situations. Coverage cannot be considered independently
from accuracy: a recommendation system can possibly achieve high coverage by
making spurious predictions, but this has repercussions on accuracy.

Confidence Metrics

Confidence metrics measure how certain the recommendation system is about the
accuracy of the recommendations. Extremely large or small predictions are often
based on a small number of user ratings (i.e., high accuracy, low confidence). As the
number of ratings grows, the prediction will usually converge to the mean (i.e., low
accuracy, high confidence). Recommendation systems have different approaches to
deal with confidence. Either they discard items with a confidence level that is below
a certain threshold or display the confidence of a recommendation to the user. There
is no general consensus on how to measure recommendation system confidence,
since classical metrics based on statistical significance tests cannot be easily applied
to all the algorithms [29].

Learning Rate Metrics

Many recommendation systems incorporate algorithms that gradually become better
in recommending items. For instance, collaborative filtering (CF) algorithms are
likely to perform better when more ratings are available. The learning rate measures
the recommendation system’s ability to cope with the cold start problem, i.e.,
how much historical data is needed before an algorithm can produce “good”
recommendations. Three different types are overall learning rate, per item learning
rate, and per user learning rate. Though the cold start problem is widely recognized
by researchers, the evaluation of a recommendation system’s learning rate has not
yet been extensively covered in the literature and no specific metrics exist [39].
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Diversity Metrics

Diversity of items in a recommendation list is an important factor for the usefulness
of a recommendation. For instance, a user watching the first episode of the film “The
Lord of the Rings” might receive recommendations for the sequel movies, which
may be considered trivial. According to Ziegler et al. [48], diversity has a large
effect on the usefulness of recommendation lists and therefore there is the need to
define an intra-list similarity metric. The intra-list similarity metric is a measure for
the diversity of a recommendation list.

Novelty and Serendipity Metrics

A recommendation system can produce highly accurate recommendations, have
reasonably good coverage and diversity, and still not satisfy a user if the rec-
ommendations are trivial [44]. Novelty and serendipity are two closely related
dimensions for non-obviousness [22]. Serendipity is the experience of discovering
an unexpected and fortuitous item. This definition contains a notion of unexpected-
ness, i.e., the novelty dimension. Novelty and serendipity metrics thus measure the
non-obviousness of recommendations and penalize “blockbuster” (i.e., common or
popular) recommendations. The few existing suggestions on how to measure novelty
and serendipity are limited to on-line analysis [14, 35].

User Satisfaction Metrics

In our context, user satisfaction is defined as the extent to which a user is supported
in coping with the information overload problem.7 This is a somewhat vague aspect
and therefore it is difficult to measure [14,35]. All the previously defined metrics can
support and/or inhibit user satisfaction to some extent. Studies that investigated user
satisfaction with respect to recommendation systems are scarce, mainly because of
the difficulties in performing on-line testing [35].

11.2.4 One-Dimensional Evaluation

Traditional recommendation system benchmarking commonly evaluates only
one dimension of the recommender, i.e., quantitative recommendation accuracy.
Moreover, even traditional recommendation accuracy driven evaluation may have

7Editors’ note: More broadly, recommendation systems in software engineering do not only or
always deal with the information overload problem [46]; thus, the definition of user satisfaction
needs to be broadened in such situations.
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Table 11.3 A user–item matrix divided into a training set (the top
half) and a test set (the bottom half)

u1 u2 u3 u4 u5

i1 1 1 0 0 1
i2 1 0 1 1 1
i3 0 0 0 1 0
i4 1 0 1 0 1

i5 0 0 1 1 0
i6 0 0 0 1 0

drawbacks when applied together with an improper evaluation setting. To illustrate
this we focus on the context of user-centric evaluation in a traditional user–item
interaction scenario.

Consider this top-n recommendation example. We have a user-item interaction
matrix, as shown in Table 11.3. The table shows a matrix of 5 users and 6 items and
their interactions, where each one represents an interaction (rating, purchase, etc.),
and each zero the lack thereof.

The training/test split is illustrated by the line in the middle of the table. In this
case, a traditional evaluation approach will only recognize item i6 as a true positive
recommendation for user u4 and item i5 for users u3 and u4. Users u1, u2 and u5 will
not have any true positive recommendations since they have not interacted with any
of the items. The evaluation does not consider that the items might actually be liked
by the user, if recommended in a real-world situation.

Traditional evaluation estimates the users’ taste by analyzing their histories of
item interactions, e.g., items they have rated, purchased, or otherwise consumed.
This type of evaluation models the accuracy of the recommender algorithm, to a
certain point [22]. In order to further estimate the quality from the user’s perspective,
a different set of metrics and evaluational concepts need to be considered instead.

11.2.5 Multi-dimensional Evaluation and Benchmarking

In any real-world application, recommendation systems should simultaneously
satisfy (1) functional requirements that relate to qualitative assessment of rec-
ommendations, and (2) non-functional requirements that are specified by the
technological parameters and business goals of the service. These requirements
have to be evaluated together: without the ability to provide sufficiently accurate
recommendations, no recommendation system can be valuable. Since bad quality
recommendations will have an adverse effect on customer retention and user loyalty,
they ultimately will not serve the business goal of the service (see Sect. 11.2.5).
Similarly, if the recommendation system does not scale well with the characteristics
of a service, and is not able to provide recommendation in real time (the response
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Fig. 11.2 The three primary
dimensions of the
multi-dimensional evaluation
approach

time depends on the virtue of the service, but usually ranges within 10–1,000 ms),
neither users nor service provider benefit from the recommender. Consequently, a
tradeoff between these types of requirements is necessary for an impartial and com-
prehensive evaluation (and if needed, benchmarking) of real-world recommender
solutions.

The three primary dimensions of the multi-dimensional evaluation approach [37]
are shown in Fig. 11.2.

User Aspects

From the user perspective, the benefits of recommendation systems lie in their
persuasiveness, i.e., their capability to influence a user’s attitude, decisions, or
behavior. By making it easy to access information, and by tailoring the content
offered, a recommender can affect a user’s attitude positively toward the application,
and make their relationship with the system more trustful. According to the user’s
tasks, recommendations may have different goals. The goal could, for instance,
be to reduce information overload, facilitate search and exploration, and identify
interesting items, increasing the quality and decreasing the time of the decision-
making process. Increased trust and confidence in the service could also be key
factors [23].

Perception of quality is a broad concept commonly discussed in topics ranging
from e-business, where Lai [27] developed methods and instruments for mea-
suring the perceived quality of electronic services among employees of several
international electronic services; to e-learning, where Sumner et al. [42] identified
educators’ expectations and requirements on educational systems; to information
quality, where Goh et al. [19] compared perceptions of the users’ engagement in
a mobile game, etc. These works show that, in the context of recommendation
systems, perception of quality is not only dependent on the accuracy of the
recommendation but also on other, domain-dependent, factors.
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Different ways of presenting recommendations can also result in different
perceptions based on cultural settings. This has been shown in different contexts,
e.g., Chen and Pu [11] show this within a user study (n D 120) on participants from
a “western culture” and participants from an “oriental culture” that was performed
in order to evaluate, among other issues, the perceived quality of an organizational
recommendation system. The study showed that even though cultural differences
do not affect the complete spectrum of perception-related concepts, the perceived
quality in one out of two presentation formats did differ significantly between the
cultures. Similar concepts in information interaction were studied by Barber and
Badre [5], showing that some design elements in websites are perceived differently
across cultures.

Similarly Cremonesi et al. [13] compared the quality of recommendation algo-
rithms in seven different systems by means of a user study (n D 210). The
three principal findings were that (1) non-personalized recommendation algorithms
provided for high user satisfaction, although with low utility; (2) content-based
algorithms performed on par with, or better than, collaborative filtering-based
recommendation algorithms; and (3) traditional accuracy metrics (recall and fallout)
did not approximate the perceived quality very well.

It seems clear that the user’s perception of the recommender does not need to be
tied to the actual measured performance of the recommendation algorithm. Instead,
the context of the recommendation dictates how it will be perceived by the end user.
It is for this reason that the user aspects need to be prioritized, in contexts where they
are important. Recommendation accuracy, in its traditional sense, is only important
in some of these contexts. Others can stipulate that the recommendation accuracy
can very well be low, as long as other factors attain desired levels.

Business Aspects

The business model is the method that allows a company to generate revenue
and to sustain itself. Different business models may lead to different requirements
in terms of expected added value from a recommendation system. Examples
of business requirements include: increased profit, increased revenues, increased
user retention and user loyalty. For instance, in a pay-per-view video-on-demand
business model (see Sect. 11.1), the goal of the recommendation system may be
to increase sales of movies that allow the company to maximize revenues (e.g.,
movies with the largest cost and/or margin). However, in subscriber-based video-on-
demand business model, the driving forces for a company may be the desire to get
users to return to the service in the future, i.e., increase user retention and customer
lifetime; a typical showcase where recommendation systems help is outlined by
Dias et al. [16].

One can also differentiate between recommendation scenarios when the rec-
ommendation system has direct effect on the revenue generated or the influence
is rather indirect. Typical examples of the first case include webshop recommen-
dation and video-on-demand recommendation. There, the process of converting
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a recommendation to an actual purchase usually contains multiple steps, and the
recommendations should be both relevant and persuasive for successful purchase
conversion. First, the user should click on the recommended product, then add it
to the cart, and finally confirm the purchase at the checkout.8 Accordingly, the
success of recommendation is measured and evaluated in each step, since the user
can churn at any stage of the purchase process. First, the click-through rate (CTR)
of the recommendations is measured: the ratio of successful recommendation box
displays, i.e., when the user clicks on a recommended content compared to the total
number of recommendation box displays. Second, the conversion rate is measured:
the ratio of recommended content views that result in a purchase (Fig. 11.3).

In other recommendation scenarios, for instance in video streaming and “tube”
sites like YouTube, or in news websites, the goal of the recommendation system is to
keep the users on-site by providing relevant, perhaps also serendipitous and usually
novel content for them. The business model of such sites is usually advertising and
page view driven: the more page views attained, the more advertising surface can be
sold, hence increasing the revenue of the site. Page views can be increased primarily
in each user visit, or by increasing the frequency of user visits. Consequently,
the primary business evaluation metric is the CTR of recommendations, and
additionally the average page views per visit, average user page per days/months, or
return frequency of users.

Video streaming sites like Hulu may also sell advertising units within the content:
depending on the placement of the advertisement, one can talk about pre-, mid-,
and post-roll advertisements (i.e., temporally relative to when the actual content
is shown). In such cases, the success of recommendations can be also quantified
by the average video watch length compared to the total video length, or by
the number of in-video ad views achieved by the recommendations. Therefore,
successful recommendations should not just have an interesting and appealing title
or thumbnail image, but their content should also be relevant for the user.

CTR measured on recommendation boxes is higher than the conversion
rate of the entire recommendation conversion chain. As the conversion rate
rather evaluates the overall success of the whole system and since many factors
independent from the quality of recommendations may be influential, the CTR on
the recommendation boxes should be considered as the direct success measure of the
recommendations themselves [e.g., 33]. The influence of relevant and persuasive
recommendations, however, reaches beyond the first clicks and result in higher
conversion rate as well. Interestingly, Zheng et al. [47] showed that empirical
CTR values and the relevance of recommendations are not consistent; thus, using
only CTR as the ultimate metric for online evaluation of recommendation systems
may be biased and restrictive. They also suggest that optimizing recommendations
based on normalized Google distance [12] may be a better proxy for evaluating

8In some webshop implementations, clicking on a recommended content can directly add the
content to the cart, thus reducing the number of steps and simplifying the purchase process.

http://www.hulu.com
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Fig. 11.3 CTR and conversion rate. In this case the conversion rate is calculated as the product of
the three metrics: CTR, add-to-cart CTR, and checkout CTR

recommendation relevance than CTR, since the latter is biased by content
popularity.

Ideally, the evaluation metrics for business aspects should correlate and be
consistent with traditional offline evaluation metrics as discussed above. However,
both research from academia and practitioners from industry realize the gap between
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offline and online evaluation settings [20]. With sales and profitability as the obvious
common baseline denominator, the specific core metrics for real-world application
are use-case dependent, while academic research tends to focus on well-defined
recommendation related problems that can be assessed by standard offline error
based or information retrieval metrics.

Technical Aspects

In addition to user-centric and business-related requirements that relate to qualitative
assessment of recommendations and the business rationale, in any real-world
application recommendation systems should equally meet non-functional require-
ments that are specified by the technological parameters. The choice of candidate
recommendation systems for specific real-life applications must take into account
a number of technical requirements and constraints including data and system
constraints, as well as reactivity, scalability, adaptability, and robustness.

Data constraints derive from the communication architecture. For instance,
aerial or satellite TV services lack a return channel for transferring user feedback,
hindering the application of traditional collaborative filtering algorithms. As a
second example, linear TV services typically lack good-quality metadata because
of the large amount of video content produced and broadcast every day. In this
scenario, content-based filtering techniques could not be applied.

System constraints derive from hardware and/or software limitations in the
service provider infrastructure. For instance, in a mobile TV scenario, the processing
and memory capacity in the users’ hand-held devices are limited and algorithms
requiring significant computation or storage on the client side cannot be applied.

Reactivity is understood in a recommendation system as the ability to provide
good quality recommendations in real-time where the time threshold depends on
the application area use case, typically in the range of 10–1,000 ms. In an online
setting, fast response time is a must, because web users do not tolerate slow webpage
load times [30]; moreover, it has also been shown that load performance correlates
strongly with shopper conversion and bounce rate. Therefore, the reactivity of the
recommendation system also influences the its business success.

Although non-origin content (third party services, typically analytics, advertising
and social network plug-ins) accounts for an increasing portion of the total
fetched objects and bytes, interestingly, their contribution to page load time is
minimal [8], which explains the popularity of using third party recommendation
systems provided by specific vendors. Recommendations are typically displayed
asynchronously to prevent slowing down loading of the main content; however, this
can only be a partial remedy, when the entire page content is personalized, such as
location-based and personalized news aggregator services [38].

Quick response time is less critical for batch recommendation tasks, like person-
alized newsletter generation, when a large number of recommendations should be
provided for many users.

http://www.webperformancetoday.com/2012/02/28/4-awesome-slides-showing-how-page-speed-correlates-to-business-metrics-at-walmart-com/
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Summarizing, reactivity of online recommendation systems is measured by
performance indicators including but not limited to average response time, and
response rate exceeding the time threshold is measured.

Scalability of recommendation systems is generally understood as the ability to
provide good quality recommendations independently of the size of the dataset
and its primary dimensions (number of user and items), its growth, and the
dynamic of the growth. Scalability requirements can be further broken down into
model initialization and maintenance-related (training and updates) and online-
operation-related parts. By the former is meant the ability to process extremely
large, potentially heterogeneous datasets at the system initialization and recurrent
system update phases (including model building if necessary) using computational
resources linearly scalable with the data size. The latter is meant as the ability to
serve large amounts of parallel recommendation requests in real time (see also
reactivity) without significant degradation in recommendation quality. In other
words, online scalability extends the concept of reactivity for many simultaneous
user accesses.

The online scalability of initialized recommendation systems can be vali-
dated through stress-tests where recommendation requests are sent in scalable
multi-thread configuration, and scalability performance indicators—e.g., recom-
mendation throughput, response success rate, fallback response—are measured.

These requirements are particularly strict in linear TV applications, where
millions of TV viewers are used to a very responsive interface. In this scenario, there
is the need to use recommender algorithms able to run (and make efficient usage
of all resources) on a multi-processor and multi-node distributed environment. As
shown by Takács et al. [43], memory-based collaborative filtering algorithms may
fall short in this scenario.

Adaptability of recommendation systems is the ability to react to changes in
user preferences, content availability and contextual parameters. Adaptability is
crucial to overcome the cold start problem. Adaptive recommender algorithms
are able to capture new users’ preferences after the first few interactions, and
thus the quality of recommendations is improved by each user click. Analogously,
adaptive item modeling is of particular importance for new items, since integrating
user feedback on new items may improve recommendation quality significantly,
when metadata is not sufficient for appropriate item modeling [34]. Therefore
adaptability can be measured as the recommendation quality for new users and
on new items. Adaptability to changes in user preferences and content availability
can also be measured by systematic synthetic tests populating users and/or items
incrementally to the recommendation systems. Similarly, adaptability to changes
in contextual parameters will be tested by varying certain contextual parameters of
recommendation requests.

Robustness requirements are necessary to create high-quality recommendation
services, able to work in case of data corruption or component failure in a distributed
environment. Such a situation may equally arise during system initialization and
operational phases. These requirements are typically translated into the need for
fault-tolerant recommenders able to run on high-availability clustered systems,
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using, for instance, fallback components in case of system failures and including
algorithmic solutions that are stable against missing or corrupted data [1].

11.2.6 When to Benchmark and When to Evaluate

In the context of this chapter, the difference between benchmarking a recom-
mendation system and evaluating it is based on the expected outcome of the
process. Evaluation is traditionally used in order to estimate the quality of a single
system, i.e., using the same recommendation context, datasets, and implementation
frameworks. An example of this is when tuning an algorithm to either higher
accuracy, lower running time, or any other sought-after value. Benchmarking on
the other hand is applied in order to compare systems not necessarily deployed in
the same environment, e.g., the previously mentioned Netflix Prize. Benchmarking
allows a system-to-system comparison between not only different algorithmic
implementations, but across various datasets, frameworks and recommendation
contexts—provided a benchmarking protocol is defined, e.g., when benchmarking a
single evaluational aspect, a protocol for the evaluation metric is specified and used
across different systems.

In terms of recommendation accuracy, a benchmarking protocol might specify
what measures, metrics, data splits (training/validation sets) and other relevant fac-
tors to use in order to allow for a fair comparison (e.g., see Fig. 11.1). Similarly, for
multi-dimensional benchmarking, it is imperative to specify such a benchmarking
protocol in order to ensure a fair and accurate comparison. In this context, the
protocol should include the dimensions to measure, how these should be measured
(e.g., specifying metrics, how datasets should be prepared, etc.), and how the final
benchmark score should be calculated in order to allow for a simple means of
comparison. In benchmarking events such as the Netflix Prize or the KDD Cup, the
benchmarking protocol was given by the organizers; when running a stand-alone
benchmark, the protocol needs to be defined such that it meets the purpose of the
comparison. An example of this is presented below.

11.3 Benchmarking Example

As discussed above, the process of benchmarking a recommendation system should
be dependent on the use case it is deployed in. This applies to any measurable
attribute that is to be benchmarked, whether speed, or recommendation accuracy.
Failure in doing so could potentially prove detrimental to the overall quality of the
recommendation system.

This section illustrates the application of the proposed benchmarking model.
Three different recommendation approaches are evaluated and benchmarked, each
having a different characteristic, and each showing the value of a multi-dimensional
evaluation approach.
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11.3.1 Evaluation Setting

In order to comprehensively evaluate a recommendation system f , multiple
objectives need to be taken into consideration. In the scope of this chapter, these
objectives come from the three dimensions: user aspects, business aspects, and
technical constraints. Each of these is represented by some evaluation metric Ei.f /.

For the sake of convenience, we assume that all evaluation metrics are formulated
as utility functions, which we want to maximize. We define the multi-objective
evaluation function E by

E.f / D

2

6
6
6
4

E1.f /

E2.f /
:::

Ep.f /

3

7
7
7
5

; (11.1)

where E.f / is a vector of evaluation metrics Ei.f / and p is the number of
evaluation metrics. This setting corresponds to the three-dimensional benchmarking
model presented in this chapter.

The question to be answered is as follows: Suppose that we have a set of two
recommendation systems, f and f 0. Which of these systems is more suitable to
deploy in our context, as defined by the multi-objective evaluation function E?

The field of multi-objective optimization suggests several approaches to this
question [e.g., 17,45,49]. In order to keep the example evaluation below simple, we
present one common approach: weighting. This is done by combining the evaluation
metrics Ei into one single, weighted, global evaluation criterion:

U.f / D wT E.f / D
X

i

wi Ei .f / ; (11.2)

where w is a column vector and wi 
 0 are weights specifying the importance of
the evaluation metric Ei . Using the utility function U , a recommendation system
f is seen to perform better than f 0, if U.f / > U.f 0/. It is however crucial that
the choice of evaluation metrics Ei and weights wi are problem-dependent design
decisions: each recommendation system needs to have these specified based on its
context, the users’ context, and the business context, i.e., a benchmarking protocol.

11.3.2 Benchmarking Experiment

In this benchmarking experiment, we demonstrate multi-objective evaluation of
three recommendation algorithms, each tuned to a specific recommendation quality.
The algorithms are:
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• k-nearest neighbors (kNN) is a traditional recommendation algorithm
widely-used for recommendation in a wide variety of settings. kNN recommends
items that are preferred by users similar to oneself, i.e., one’s neighbors. This
can however cause low diversity due to effects of popularity, e.g., highly rated
popular movies are often recommended to very many users [10].

• k-furthest neighbors (kFN) is an algorithm that turns the kNN algorithm inside-
out and recommends items that are disliked by users dissimilar to oneself. The
algorithm is specifically tuned to deliver more diverse recommendations, e.g.,
those that traditional recommendation algorithms fail to recommend, while still
keeping the recommendations personalized [36].

• Random (Rnd) is a random recommender. This recommender is non-
personalized, simply recommending a random selection of the items available.
The benefit of this algorithm is its constant speed, i.e., independent of the
numbers of users or items. The random recommender has an obvious inherent
component of diversity and novelty, although with random accuracy, which is
presumably low.

For each of the three axis, the following data is available: (1) business axis:
the users’ intention to return to the site; (2) user axis: the usefulness of the
recommendations; and (3) technology axis: the computation time required to
calculate recommendations. The data is based on a user study (n D 132). The study
was set up as a simple movie recommender (described in detail by Said et al. [36])
where users would rate a number of movies and receive recommendations based on
the input. The above three recommendation algorithms were employed.

For the business and user axes, upon receiving a set of 10 recommended
movies users were asked whether they would consider using the system again
(intention of return), and whether the recommendations were useful (usefulness of
recommendation). Answers to the questionnaire amount to ratings normalized to a
scale from 0 (not appropriate) to 1 (highly appropriate). Based on these data, we
selected the following evaluation metrics:

• Eb.f / measures the average intention of return of f ;
• Eu.f / measures the average usefulness of f ; and
• Et.f / measures the utility of the average computation time tf required by f

according to

Et.f / D a

1C exp
�
tf
T
� 1

� ; (11.3)

where T D 30 is the maximum time considered as acceptable, and a is a factor
scaling Et.f / to 1 if tf D 0. The evaluation metric Et is one at tf D 0 and
approaches zero with increasing computation time.

According to (11.2), we combine the evaluation metrics to a utility function of the
form
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Table 11.4 Utility values U.f / for different weights w. The maximum accepted
time is T D 30 s

kNN kFN Rnd

Eu( f ) 0.53 0.52 0.44
Eb( f ) 0.56 0.51 0.36
Et ( f ) 0.80 0.80 0.99

U ( f ) with w = (0.3̄, 0.3̄, 0.3̄) 0.63 0.61 0.60
U ( f ) with w = (0.6, 0.3, 0.1) 0.57 0.55 0.47
U ( f ) with w = (0.3, 0.6, 0.1) 0.58 0.54 0.43
U ( f ) with w = (0.1, 0.1, 0.8) 0.75 0.74 0.87

U.f / D wb Eb.f /C wu Eu.f /C wt Et .f / : (11.4)

The choice of w is shown in Table 11.4.

11.3.3 Results

The utility values for different weights w (shown in Table 11.4) show that kNN
attains better values than kFN for two out of three evaluation metrics (Eb and
Eu) and ties in one (Et ). As a consequence, the utility value U of kNN is always
equal to or better than the one of kFN regardless of how the weights are chosen.
In multi-objective optimization, we say that kNN is Pareto-superior to kFN [26].
As expected, when business- and user-requirements are preferred, kNN and kFN
outperform the random recommender. In a use case where computation time is
the most critical constraint, the random recommender outperforms the others solely
based on the speed of the recommendation. In a scenario where all three axes are
equally important, kNN performs best.

The results illustrate that an appropriate choice of evaluation metrics, as well
as weight parameters, are critical issues for the proper design of a utility function
and benchmarking protocol. This design process is highly domain- and problem-
dependent. Once a proper utility function has been set up, the performance of
different recommender algorithms can be objectively compared. Since current state-
of-the-art recommendation methods are often optimized with respect to a single
recommendation accuracy metric, introducing multi-objective evaluation functions
from the different contexts of a deployed recommendation system sets the stage for
constructing recommendation algorithms that optimize several individual evaluation
metrics without simultaneously worsening another.
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11.4 Discussion

The concepts related to evaluation, and specifically to multi-dimensional evaluation
presented in this chapter provide a motivation as to why (and how) recommendation
systems can be evaluated and compared to each other across different domains,
datasets, and contexts—as long as the evaluation and benchmarking protocols
are specified. The creation of these protocols, and specifically the combination
(weights) of the dimensions of the evaluation are however not entirely trivial and
need to be chosen with the recommendation requirements in mind. When these
are provided, the overall quality of the recommendation system can be estimated
and compared toward other recommendation algorithms, no matter the datasets,
contexts, and other system-specific deployment aspects.

Benchmarking protocols need to accurately reflect the expectations and con-
straints of the benchmark, such as the domains in which the recommendation
systems are deployed (e.g., products, code) and other aspects related to the
environment in which the recommendation systems live (e.g., framework, memory,
CPU). An accurate benchmarking protocol needs to be based on a thorough
analysis or empirical studies of the needs and priorities of the context in which a
recommendation system is to be deployed.

It should be noted that a simple one-dimensional evaluation approach will in
most cases be sufficient to tune a recommendation algorithm and estimate its
quality. The added cost (in terms of development) of a benchmarking protocol
that can estimate the in situ quality of an algorithm could potentially be higher
than an in-place evaluation of said algorithm. However, when comparing multiple
algorithms across a variety of systems, the accumulated cost will likely be lower
when using benchmarking protocols than performing in situ evaluation of each
candidate algorithm.

11.5 Conclusion

In this chapter, we have introduced concepts related to evaluation and benchmarking
of recommendation systems, e.g., reactivity, scalability, adaptability, business val-
ues, etc. The combination of these concepts allows for a cross-system comparison
of recommendation systems in order to find the most suitable recommendation
algorithm for a specific recommendation context. Combined, the concepts create
a benchmarking model—a protocol—that can be tuned to the specific use case of
the recommender in order to accurately reflect the system’s quality.

Additionally, the chapter surveyed benchmarking events such as the Netflix
Prize, which set the standard for recommendation system evaluation during the last
decade. Moreover, an overview of common datasets and frameworks for recommen-
dation and evaluation was provided in order to show factors that can affect evalua-
tion, e.g., data sparsity, size, and implementation differences across programming
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languages. Following this, the chapter introduced aspects of recommendation
system evaluation related to the technical constraints and business values in a
deployed system, e.g., the importance of rapidly changing recommendations in a
system with ephemeral items (live TV), or the importance of delivering the right
recommendation not only from the user’s perspective but also from the provider’s
(Internet marketplaces). These factors, even though seldom used for evaluation,
define whether a recommendation system will be able to perform adequately in its
deployed context or not.

Finally, the chapter introduced a multi-dimensional benchmarking model that
allows for a comparison of recommendation systems across domain-, dataset-, and
recommendation-contexts. The model takes into consideration not only traditional
evaluation methods (accuracy, rating prediction error), but also any number of
factors from other domains (business and technical) in order to create a simple
comparable value encompassing all relevant evaluational aspects and domains.

The model allows a comparison of the qualities of recommendation systems
deployed in different domains, using different datasets and having different require-
ments by using a tailored benchmarking protocol.
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Chapter 12
Simulation

A Methodology to Evaluate Recommendation Systems
in Software Engineering

Robert J. Walker and Reid Holmes

Abstract Scientists and engineers have long used simulation as a technique for
exploring and evaluating complex systems. Direct interaction with a real, complex
system requires that the system be already constructed and operational, that people
be trained in its use, and that its dangers already be known and mitigated.
Simulation can avoid these issues, reducing costs, reducing risks, and allowing an
imagined system to be studied before it is created. The explorations supported by
simulation serve two purposes in the realm of evaluation: to determine whether and
where undesired behavior will arise and to predict the outcomes of interactions
with the real system. This chapter examines the use of simulation to evaluate
recommendation systems in software engineering (RSSEs). We provide a general
model of simulation for evaluation and review a small set of examples to examine
how the model has been applied in practice. From these examples, we extract
some general strengths and weaknesses of the use of simulation to evaluate RSSEs.
We also explore prospects for making more extensive use of simulation in the future.

12.1 Introduction

The creation and study of simulations is a traditional activity performed by scientists
and engineers, aimed at understanding something about the “real world,” in which
the real world is too complex, too expensive, or too risky to directly understand
well [29]. Consider two examples: a computer program that forecasts the weather
and a wind tunnel containing a scale model of an airplane. In weather forecasting,
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predictions about the weather are needed in advance in order to plan; while an
unexpected rainy weekend is unpleasant, imagine an unexpected hurricane arriving.
In the wind tunnel, avionics engineers can measure properties of a proposed
airplane’s performance; this avoids the high cost of constructing a prototype real
airplane, avoids the risk to a real test pilot’s life, and avoids the necessity of locating
the precise physical conditions somewhere in the real world that are of interest.

Essentially, a simulation is an imitation of the functioning of one system by
the functioning of another, typically simpler one; a simulation involves executing
a model of behavior with specific inputs to obtain the resulting outputs. In other
words, we seek to abstract away those details of the real system that are too complex
or that otherwise are not considered important for what is being studied.

The word “simulation” can refer to the general, abstract idea (“simulation is a
common methodology”); a specific instance in which the methodology is applied
(“the simulation was conducted as follows”); and a particular execution of a specific
model (“we observed interesting phenomena recorded during the third simulation”).
Some research fields differentiate simulation modeling [6, 11, 29] as the activity
that creates the static model that is then dynamically driven to produce the results,
i.e., during the “simulation.” While in principle this overloading of the term can
confuse the reader, the context in which the term is used generally disambiguates
the meaning.

Simulation is performed for three main purposes: (1) to estimate the answer to a
problem whose exact computation would be too expensive to solve directly; (2) to
explore the range of behaviors attainable from the model for a set of inputs that
are representative in some sense; or (3) to predict a set of outputs that can then be
compared against reality, for the sake of evaluating the model. Cases 2 and 3 involve
evaluation and will be most pertinent to this chapter.

For recommendation systems in software engineering (RSSEs), few authors [5,
15, 23, 36] make mention of the term “simulation,” often referring to their studies
as simply “experiments” or “evaluations” [4, 12, 13, 18, 19, 21, 37]. An evaluation
involves an examination of something to assess its merits. An experiment involves
following a disciplined procedure to test a hypothesis, usually under controlled
conditions. A simulation involves imitating the behavior of some process, usually
for the purpose of study. Thus, experiments and simulations can be used in
evaluation, and simulations can be used in order to conduct experiments. But a
simulation need not involve experimentation (an exploration does not involve testing
a hypothesis) nor even an evaluation (watching an animated simulation may be
simply aesthetically pleasing).

Perceptions of the value of simulation can color the accepted usage of the term.
For example, some disciplines make a distinction between “the use of computer
techniques to perform calculations, on the one hand, and [proper] computer
simulation, on the other” [16, p. 128]. Winsberg [35] claims that two characteristics
distinguish “mere number crunching” from “true simulation”:

1. the use of a variety of techniques to draw inferences from the numbers; and
2. the application of expertise and judgment to decide which results are reliable.
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Fig. 12.1 A model of a typical RSSE

The essential point is to say that the algorithmic production of data does not imbue
it with validity [2, p. 67]: garbage-in/garbage-out. A serious simulation must be
designed with careful consideration of its underlying model and choice of inputs;
triangulation of the results—in which different methodologies are applied to address
a research question—is most likely to ensure that they are meaningful [8].

The remainder of the chapter is structured as follows. Section 12.2 describes a
general model for the use of simulation in evaluating RSSEs. Section 12.3 describes
examples from the RSSE literature that have made use of simulation for evaluation,
focusing specifically on that use, and referring to our general model. Section 12.4
summarizes the lessons learned.

12.2 A General Model of Simulation for Evaluation of RSSEs

RSSEs come in many varieties, with differing characteristics, differing purposes,
and differing design decisions [26, 27]. Nevertheless, consider the model shown
in Fig. 12.1, which represents a common arrangement in many RSSEs. In it, a
developer interacts with an integrated development environment (IDE) in order to
perform development tasks. This interaction may explicitly involve asking the RSSE
for recommendations (query/response), or the developer’s activities may cause
events to be reported to the RSSE, which in turn can cause changes to occur in the
IDE (to announce recommendations). During these activities, the IDE will typically
interact with some internal representation of the programs and other artifacts upon
which it operates (the “workspace,” which may include a version control system or
other repositories); some RSSEs will also directly access this representation. Many
RSSEs are configurable in some form, which we represent as an artifact upon which
the RSSE depends. Furthermore, the RSSE may record and later utilize a history of
information: for example, past decisions by this developer or decisions by others.

This is a potentially complex situation. The workspace and history can be large
and can differ significantly between organizations; the human developer can be
unpredictable; the IDE can contain bugs. Simulation can most obviously be used
here in two ways: to determine how the developer will react to certain situations and
to determine how the RSSE will react to certain situations. Unlike other simulation
contexts (like the wind tunnel or in weather forecasting), we will typically have
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the RSSE already in hand, so the simulation will either involve (a) constructing
an artificial workspace/history/configuration in order to see how the developer
will react or (b) imitating the developer and the environment around the RSSE to
examine how the RSSE behaves.

As a standard means of simplifying the situation, we note that the RSSE receives
inputs and produces outputs, but that the real sources and sinks of that data can
be imitated; this results in the generic simulation model of Fig. 12.2. In it, the
developer is removed along with the IDE to be replaced with a simulator that
generates events/queries and receives responses (likely recording these somehow);
in practice, the simulator is simple and may not even be automated. A simulation
environment for an RSSE is a combination of workspace, history, and configuration,
appropriate for the particular RSSE being studied. Note that this generic simulation
model will work for RSSEs that are not well described by the model of Fig. 12.1; its
only assumption is that the RSSE takes input (explicit and/or implicit) and produces
output.

This model is analogous to the standard model of unit testing, in which a
software unit of functionality (e.g., a class) provides an interface that can be
called, that can have data passed to it, that returns output, and that may depend
on other units of functionality; we want to isolate the unit of interest, and so the
other units that it depends upon are eliminated in favor of ones constructed to
collect information and/or to return specific values to the unit under test. These
replacement dependencies are often called stubs (they come in many varieties each
using different names).

The RSSE is analogous to the unit under test, the simulator is the driver, and
the simulation environment is the stub that replaces the other dependencies of the
RSSE. Different scenarios can be explored by adjusting the content of the simulator
and simulation environment. As with choosing the extent of a given unit in unit
testing, the researcher can adjust the boundary between the RSSE and the simulation
environment to achieve different purposes: for example, one might choose to have
the RSSE construct and modify a real history over an extended interaction sequence,
rather than just initializing a synthetic history directly.

An alternative simulation scenario makes sense in some settings (see Fig. 12.3).
In this scenario, the RSSE is not present, but the researcher wants to evaluate
the reaction of the developer to potential recommendations, possibly derived from
data previously collected from them. In this case, the RSSE itself is simulated: its
recommendations may be computed offline or synthesized and can be presented



www.manaraa.com

12 Simulation 305

interaction
RSSE

simulator

Developer

Fig. 12.3 A generic model
for an alternative simulation
scenario for an RSSE

directly by a human being, as a paper prototype, or as a mocked-up program. This
case is not currently common in the RSSE literature, but it is not unknown in other
areas—so-called Wizard of Oz experiments [17] are one variation on this idea.

Given either of these setups, it is necessary to determine with what inputs the
simulation will be driven and what to do with the outputs that result. Ultimately,
these decisions are important and should be based on the purposes for conducting
the specific simulation. The chapter henceforth focuses on the case where the
RSSE’s context is being imitated (as per Fig. 12.2).

12.2.1 Inputs and Outputs

Let V be the set of possible simulation environments for a specific RSSE. In
addition, let Q be the set of possible queries on the RSSE. Then the set I of
possible inputs will be I � Q � V (it is a subset because not all queries may be
possible for all simulation environments). Furthermore, let R be the set of possible
recommendations that the RSSE could possibly produce, and let M be the set of
meta-results (like the time needed to perform its calculations) that are not derivable
from R. Then the set O of possible outputs from the RSSE will be O � R�M �V ,
where V is included as the RSSE could modify the simulation environment. Thus,
we can see the RSSE as defining a function f W Q � V 7! R �M � V . For most
RSSEs, the input space and output space will be too large to evaluate exhaustively;
even sampling thoroughly such a large space will be infeasible in general [31].

While the need to abstract away from the full input and output spaces ought
to be obvious, there is the danger of oversimplification that can lead to poor
generalizability and questionable meaningfulness [9, 32]. The inputs tried and
outputs obtained ought to comprise a representative sample of the possible inputs
and outputs—that is, the results ought to generalize to the full space, or at least
the subset of that space that is considered most important. There are three basic
approaches to obtain representative samples. (1) Consider the full input space
abstractly, without concern for the relative likelihood that a given query will occur
in practice. (2) Consider the intended application, where we have knowledge or
assumptions of realistic inputs and can judge whether a given input is likely.
(3) Select inputs so that the resulting outputs are representative of the output space,
which can require either that the function f be invertible or that a search process be
followed to find an input that can obtain a given output. Hybrid approaches between
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the three basic ones are also conceivable. In general, the desire is to sample more
heavily those regions of the full (input or output) space that are more likely to occur
in practice. But sometimes, the researcher is interested in determining the overall
characteristics of the space, such as whether problematic states can ever result.

Simulations of RSSEs often consist of multiple trials of single-step simulations:
each trial i consists of selecting qi 2 Q and vi 2 V to obtain ri 2 R, mi 2 M ,
and v0i 2 V . But it is also possible to have each trial involve multiple steps, where
vi;j is v0i;j�1 obtained from the previous step. In this way, emergent behavior of
an RSSE that alters its environment can be investigated; this is obviously only of
interest where vi;j ¤ v0i;j�1 for at least some trials. Whether single-step or multiple-
step trials make more sense depends greatly on the characteristics of the specific
RSSE and the purpose of the simulation. In practice, many RSSEs do not directly
modify their environment, although they are used within environments that change
over time, for example, where a version control system tracks code modifications
and the RSSE uses this information.

12.2.2 Characterizing the Results

How a researcher should characterize the results of simulation trials depends on
what the purpose is for conducting them. Such purposes could involve (1) descrip-
tion of individual results without reference to an external notion of what would be
good; (2) indication of under what conditions certain classes of results occur; or
(3) assessment of the quality of the results.

As an example of simple, descriptive summarization, if the execution time of
the RSSE is to be described, standard descriptive statistics will often suffice (i.e.,
minimum, maximum, mean, standard deviation), but sometimes, a graphical plot
of the execution time may be better—especially if the researcher has noticed that
the execution time appears to have a relationship with other factors. These kinds
of characterizations depend heavily on the numeric nature of the (meta-)data being
characterized and are not appropriate for categorical data, in particular, which is
what a recommendation would typically consist of.

Simulation can also be used to explore the behavior of the RSSE without
concern about the “correctness” of its recommendations. This can be appropriate
in situations where the general properties of the RSSE’s behavior, relative to the
inputs, are of interest. For example, if one wished to determine under what input
conditions the RSSE would provide no recommendations, simulation could be used
to probe the input space to address the question. In practice, such questions are
usually supplementary to asking about the “correctness” of the recommendations.

In many settings, we want to assess the quality of the resulting recommendations.
Quality is an imprecise term that may possess both objective and subjective
elements; as a result, different stakeholders can have significantly different opinions
about the quality of a recommendation. Consider that the needs of a novice are often
very different from those of an expert: the same recommendation given to each
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would likely attain different opinions as to its quality. Furthermore, users’ needs
depend heavily on the context of their applications: in some contexts, incorrect rec-
ommendations would be disastrous; in others, recommending all possible answers
is irrelevant as long as a single expected recommendation is actually recommended;
in yet others, the order of individual recommendations will matter.

In the typical RSSE simulation scenario, a key purpose is to avoid the use of
collecting subjective assessments and the complications outlined in the previous
paragraph, so some means of determining the “right answer” (i.e., the expected
recommendation) is needed that would be expected to be recommended by an ideal
oracle with perfect knowledge (see Sect. 12.2.2); this can then be used to assess the
objective aspect of the quality. Expected recommendations are often derived from
data collected from the real world; note that this does not automatically mean that
the expected recommendations are objectively “correct” though (see Sect. 12.2.2).
A variety of measures are available to characterize the objective quality, with
varying levels of detail and appropriateness (see Sect. 12.2.2). But one must be
careful: this purely quantitative approach to assessing quality may not result in an
accurate reflection of the user experience. Ultimately, human-participant studies are
needed to determine whether the quantitative analysis of quality agrees with the
reality; this would be a form of triangulation.

In Chaps. 11, 13, and 9, Said et al. [28], Tosun Mısırlı et al. [33], and Murphy-Hill
and Murphy [24] (respectively) expand on the idea of a more complete evaluation
of an RSSE, often involving real developers.

Determining Expected Recommendations

Most commonly, it is the quality of the RSSE’s recommendations that is to be
evaluated; this requires knowing, assuming, or otherwise estimating the expected
recommendations. With a given expected recommendation for a given input, the
researcher can compare the RSSE’s actual recommendation against the expected
recommendation for the given input.

It is generally problematic to determine the expected recommendations. In
many situations, it is impossible or impractical to automatically generate the
expected recommendations; otherwise, the RSSE would use that algorithm and the
“RSSE” would no longer qualify as a recommendation system (instead it would
compute the correct answer). There are three possibilities for determining expected
recommendations: (1) asking human participants for their assessments; (2) using a
variety of other automated approaches comparatively; or (3) using data collected
previously from the real world.

Human participants from an appropriate population (e.g., students, experts, etc.)
can be asked to either provide the correct answers or judge whether the RSSE’s
answers are correct. When the definition of correctness is dependent on the context
of the task for which recommendations are being produced, it is important that the
participants understand the context of the task in order to make such judgments.
Detailed instruction and training exercises with feedback are common techniques
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for ensuring that participants have a common understanding of the tasks to be
performed. It is also important that the study design avoid the participants’ biases:
their tendency to assume that the recommendations are correct, or their wish to
provide the answers that they assume are desired by the experimenters. Ideally,
the experimenters should avoid giving any hint of their own opinions and avoid
indicating whether the RSSE being studied is their own. When the definition of
correctness being used is subjective, the human participants will tend to differ in
their opinions. Often, the majority opinion is interpreted to be the expected recom-
mendation (particularly for categorical data); other options include using the average
(for numerical data) or allowing multiple possible expected recommendations. But
when participants’ opinions differ, there exists a threat to validity of the results: it
may be that the experimenters failed to instruct the participants sufficiently, or that
the task is too subjective. Minor variations in opinions are often ignored without
serious problems. But even when participants’ opinions agree, there is no guarantee
that no threat to validity exists; it could be that all the participants share the same
bias, and so a systematic error exists in the experiment. In either case, it is best
practice to be explicit that the threat exists.

Attempting to estimate the expected recommendation on the basis of other
automated approaches (e.g., other RSSEs) is fraught with danger. First, if based
on published results of the other approaches’ application to the same data, there is a
strong chance that the current RSSE will have been developed with the knowledge
of those results—it has been overfitted to this data. Second, triangulation of other
RSSEs’ recommendations is no guarantee of the correctness of those other RSSEs
nor of their “averaged” results; a researcher will be biased in evaluating novel
recommendations not in the union of the recommendations from the other RSSEs
(see previous paragraph). As argued in the literature [3,7], although determining the
ground truth for expected recommendations may be costly, reference to the ground
truth is the only way that an evaluation of quality can approach a lack of bias.

Real Data

For many RSSEs, the researcher can take advantage of some sort of real-world data
in producing the set of queries and/or the simulation environment. For example,
a repository of open-source programs can serve either to produce queries that ask
about source constructs or as the simulated workspace from which the RSSE will
draw its knowledge. If a reasonable argument can be made that the data thus used is
representative, or at least not a bad representation of other inputs (because it is not
too trivial, too large, or too biased in some way), such real data can often avoid the
high costs and questionable validity of constructing that data artificially.

For some RSSEs, a repository of data is available that contains both examples
of real queries and the corresponding examples of expected recommendations; that
is, the repository D consists of pairs di D .qi ; ei / of queries qi and corresponding
expected recommendations ei . (Note that the generality of these extracted examples
is dependent on the representativeness of the source of the data, too.) If the RSSE
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need not draw upon a workspace or history, each query qi from the repository can
be posited to the RSSE, and its actual recommendation ai can be compared against
the expected recommendation ei . If the RSSE does need to draw upon a workspace
or history, it is important to separate the data used for querying from the data used
to form the workspace or history—otherwise, the RSSE would already have access
to the expected answer for that query, which will generally not be a representative
simulation situation. The typical approach to this process divides the real data into
a training set and an evaluation set. When this process is repeated with k different
partitions (often chosen at random) and measures of quality are averaged over each,
it is called a k-fold cross-validation [22]. In many RSSE situations, a truly random
partition of the data cannot be chosen, but instead all data before a given point (for
example, a particular timestamp) are used as the training set, and the remaining k

data items are used for the evaluation set; this is called k-tail evaluation [21].
It is possible to draw both the queries and the simulation environment’s data

from the same data items, but this is necessarily a tricky proposition. Given a data
item ei 2 D0 that will ultimately serve as an expected recommendation, one can
construct its corresponding query qi by extracting a subset of the information from
ei . If that set of information is too perfect, this will not be a fair evaluation. Thus,
the researcher must define a transformation T W D0 ! Q that will obfuscate the
original identity of ei from the RSSE. For example, elements can be removed from
the set of extracted information, elements can be added to it, or elements can be
modified to hide their nature. The details of fair and appropriate transformations
depend heavily upon the application context, the design of the RSSE, and the
research questions being addressed. A researcher can expect to have difficulty
convincing reviewers that the chosen transformation is not biased.

Evaluating the Objective Aspect of Quality

Researchers are often interested in the objective quality of the recommendations
produced by an RSSE. As discussed above, a careful choice of the inputs (both
queries and simulation environment) is important to obtain meaningful results, and
availability of the expected recommendations is needed for the sake of evaluating
the quality. But in the absence of perfect agreement or perfect disagreement
between the actual and expected recommendations, one needs a way to assess the
quality. This is often done with measures borrowed from the field of information
retrieval, but several aspects of their use is important to note: (a) there are many
such measures available with differing strengths and weaknesses; (b) summarizing
a set of observations of agreements/disagreements between actual and expected
recommendations necessarily eliminates information—the fewer in quantity that
the resulting summary measurements are, the more information that has been
lost; (c) the measurements are correct only for the specific inputs and outputs for
the RSSE, and these will generalize to other situations only if the inputs were
representative of those other situations; and thus (d) comparing two RSSEs requires
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that the same measures be used on each, and that they be collected in identical
situations.

A useful notion in evaluating quality is the confusion matrix, shown below:

Expected
Yes No

Actual Yes TP FP
No FN TN

For any given item, the two dimensions represent what the expected recommenda-
tion is (either “Yes,” it is in the set of interest, or “No,” it is not) and what the actual
recommendation from a given RSSE and simulation environment was. Where the
expected and actual recommendations agree, we have a true recommendation from
the RSSE—either a true positive (TP) or true negative (TN); in case of disagreement,
we have a false recommendation from the RSSE—either false positive (FP) or
false negative (FN). Typical RSSEs will provide multiple recommendations in a
given situation, so each recommendation in the set can then be classified within a
confusion matrix; this results in a four-valued characterization of the quality of that
recommendation.

Often, people use a characterization of quality with fewer values, in which the
confusion matrix is reduced to other measures [34]—for example, the precision and
recall, or just the F-measure (the harmonic mean of the precision and recall). To
summarize the overall quality of recommendations from a set of trials, one can
either populate a single confusion matrix (called microevaluation) or use a means
of summarizing the individual quality measures [30] (called macroevaluation): for
example, a simple approach is to take the mean over the individual measures.

One can introduce schemes to weight certain cells in the confusion matrix,
allowing us to account for contexts in which, say, false positives are problematic.
Such a scheme ought to possess some a priori justification, such as empiri-
cal knowledge of the application context, in order to achieve construct validity
[10, 20].

Variations on the standard idea of the confusion matrix are possible. For
example, one can use matrices with higher dimensionality in order to simultaneously
compare multiple RSSEs with expected recommendations. One can allow more
than two outcomes: some RSSEs are explicit about recommending to do something,
recommending not to do something, or making no recommendation [e.g., 15]. One
can permit the confusion matrix cells to represent fuzzy sets: the probable count
of cases that fall within a cell. For example, recommendations often come with
confidence values attached to them that can be interpreted as the probability that the
recommendation is right. Each cell of the confusion matrix would then be a sum of
the probabilities of the recommendations that fall therein.

In Chap. 10, Avazpour et al. [1] expand on the notion of quality, exploring a
variety of other measures.
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12.3 Experience with Simulation to Evaluate RSSEs

We proceed to examine four papers from the literature on RSSEs that have applied
simulation for the sake of evaluation. These four papers use simulation in different
problem contexts and in different ways; common strengths and weaknesses of
simulation for evaluation can be seen from these. Section 12.3.1 examines eROSE
(originally called ROSE) [37]; its evaluation solely involved simulation, derived
from data collected in industrial version control systems. Section 12.3.2 examines
Strathcona [15]; its evaluation used simulation only to generalize the results
from its formal experiments. Section 12.3.3 examines GilliganCSuade [12]; its
evaluation made heavy use of simulation, derived from data previously collected
during a formal experiment. Section 12.3.4 examines an unnamed approach for
recommending development environment commands [23]; its design started from
a simulation, derived from data collected from actual industrial use of an IDE.
It is particularly interesting as it is a rare case in which the RSSE itself was
simulated.

Only enough detail is provided to describe the application problem addressed and
the solution pursued in order to contextualize the use of simulation in the evaluation
of the research. In addition, each subsection attempts to emphasize the evaluation
problem that the research attempted to address through simulation, details of the
simulation procedure followed, and threats to the validity of the results as reported
by the authors of each paper.

12.3.1 Recommending Programmatic Entities to Change:
eROSE

Real software systems tend to be large and complex. As a result, developers can
have trouble recognizing dependencies between different parts of a system: in some
cases, they fail to see explicit dependencies due to excess visual noise from other
code; in other cases, the dependencies are too subtle to easily detect. As a result,
when the developer modifies one part of their system, they are liable to overlook
other parts that should also be changed. Automated analyses of the control- and
data-flow within the system can help in some cases, but undecidability can limit the
effectiveness of such analyses.

The Recommendation System

Instead of analyzing the structure or runtime of the program to look for depen-
dencies, past human experience can be leveraged as recorded in a version control
system. By detecting that two (or more) entities have tended to change together in
the past, the hypothesis is that they are likely to change together again in the future.
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Thus, in detecting the fact that a developer has modified one or more entities in the
program, recommendations for other entities to change can also be made. This is
the premise of the eROSE tool [37].

eROSE mines the history to locate commits: sets of changes simultaneously
submitted, where a change consists of a change type and an entity. Commits
must be inferred, particularly for repositories using CVS (which versions only
individual files, and so groups of files simultaneously submitted can be detected only
indirectly). Furthermore, entities are considered the same (and hence two versions
of the same entity) if and only if their names (or signatures, for methods) and the
names of their structural ancestors are identical. The presence of two (or more)
changes occurring frequently enough together leads eROSE to infer a rule that a
change to one entity likely ought to be accompanied with a change to that (or
those) other entities. CVS supports branching to allow independent development
paths of different variants of a system; in some cases, changes within a branch are
merged back into the main trunk, resulting in apparent commits involving very large
numbers of entities. eROSE heuristically ignores commits that involve too many
entities, in order to avoid considering merges.

In general eROSE takes a set of changed entities as the query from the devel-
oper’s IDE, mines for rules involving those entities, and makes recommendations
about other entities to investigate. For each recommendation it indicates two
measures of relevance: the confidence, representing the frequency with which the
rule has applied previously for equivalent queries, and the support count, indicating
how many cases have gone into constructing the rule.

The Evaluation Problem

eROSE operates by finding other entities to recommend once the developer has
made a change to a system. If real developers were provided with eROSE while they
performed change tasks, very little empirical data would be collected relative to the
large amount of time required to conduct the experiments. Furthermore, eROSE has
many aspects that could be and were evaluated, including: the length of history to be
analyzed; the kind of scenario in which it is being applied; the kinds of changes to
be analyzed from history; the minimum thresholds of confidence and support count
at which to make a recommendation; and the specific system to which it is being
applied. Simulation is a promising methodology to apply here in order to assess a
wide variety of situations at relatively low cost.

How Simulation Was Used

A set of industrial software systems, each with an available change history, were
selected. The general simulation procedure that was used followed four steps: (1) a
time-limited portion of the history was designated as the training set to be mined by
eROSE (the training set formed the simulation environment V ); (2) the remainder
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of the history was used to collect a set of commits T ; (3) each commit t 2 T

was partitioned into a query q and an expected recommendation e; and (4) eROSE
was given each query, and the actual recommendation was compared against the
expected recommendation.

Several variations on this general procedure were followed. In particular, the
manner of partitioning the commits into queries and expected recommendations
was varied according to three conjectured usage scenarios.

1. Navigation involved the simulated developer making a single change and
recommending to them a set of other changes. For each commit ti , jti j distinct
queries qj were formed such that jqj j D 1.

2. Error prevention involved the simulated developer making a set of changes but
missing one. Again, jti j distinct queries were formed, but each one contained the
entirety of the commit except for one change; hence, each qj D ti � fej g for
some unique ej .

3. Closure involved checking that eROSE would not recommend additional changes
when the whole commit was used as the query. This involved one query for each
commit, for which ei D ;.

The general simulation procedure was then followed for several cases.

• The effects, on the quality of eROSE’s results, of selecting thresholds for
confidence and support count were explored for each of the usage scenarios.
For each scenario, different levels were selected representing the appropriate
trade-off between precise recommendations (few wrong recommendations) and
complete recommendations (few missing, correct recommendations). This can
be seen as a configuration phase.

• With the preferred settings for a given usage scenario in place, the quality of
eROSE’s results was then evaluated for that scenario.

• The effects of the level of granularity of the entities being analyzed and reported
were considered. The configurations from the previous item were repeated, but
for which the entities were considered only in terms of files, rather than individual
functions or variables. The quality of eROSE’s results was then evaluated and
compared against those from the previous item.

• The effects of restricting changes to consider only alteration (“maintenance”)
events, as opposed to addition or deletion of entities, were considered. Two
conditions were compared: where only maintenance events were considered,
and where all change events were considered. The navigation scenario with its
preferred configuration was again used to instantiate the general procedure.

• The effects of differentiating the kinds of change events, as opposed to treating
them all as generic change events, were considered. The configuration from the
previous item, in which all change events were considered was used again; this
time, two conditions varied this configuration: whether the kinds of change events
were differentiated or not.

• The effects of the duration of the project’s history were considered on the quality
of the recommendations, both in terms of looking at the intervals from the project
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start until a set of specific moments and in terms of looking at the intervals of a
specific length prior to a set of specific moments. This investigation was restricted
to two projects.

Reported Threats to Validity

Zimmermann et al. [37] report four possible threats to validity in their work on
eROSE. (1) More than 100,000 commits on eight large open-source systems were
studied. Although these systems differ in terms of domain (and likely also in terms
of development processes, design issues, etc.), the results may not be representative
of all systems. This issue plagues much research in software engineering, regardless
of methodology applied or problem context investigated. (2) Transactions do not
record ordering information about individual changes. Zimmermann et al. express
concern that different frequencies for specific orderings of changes could affect
results for the navigation and error prevention usage scenarios. (3) Transactions
are not assessed for their quality. Any commit that is not filtered out by the
branch-merging heuristic is used by eROSE. This is potentially problematic since
developers sometimes make bad decisions, and so the expected recommendations
extracted from the history would differ from the true expected recommendations.
But since bad decisions will make their way into the version control system far
less frequently than good decisions, the effect on the expected recommendations
is likely small. (4) There is a difference between a recommendation being correct
and it being useful. Assessing the usefulness of recommendations would require a
different methodology to be applied.

12.3.2 Recommending Usage Examples for an API:
Strathcona

Developers frequently make use of libraries and frameworks to create software
applications. Libraries and frameworks provide application programming interfaces
(APIs) specifically for this purpose. For nontrivial cases, understanding how to
correctly utilize an API can be difficult: particular subtypes must be provided,
particular objects must be created, and particular methods must be called in
particular orders. Examples are often used by developers to understand usage
scenarios for APIs, but this requires (a) that the examples exist and (b) that the
developer know how to locate the appropriate example for their needs.
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The Recommendation System

To overcome these weaknesses, a recommendation system can be created that allows
the developer to specify the kind of example of interest. Many forms of specification
are possible, but few are developer-centric, placing a high burden on the developer
to be precise and accurate. Instead, the fact that the developer is specifically trying
to interact with the API means that they will have a partial implementation of
what interests them, a skeleton. This skeleton may not even compile, but hopefully
describes certain details of the interaction that matter to the developer. Furthermore,
for many APIs, source code already exists that uses it in some form. By extracting
information from the skeleton and looking for existing source code that also contains
(some of) the same information, we can hope to provide meaningful examples to the
developer.

This is the basic idea behind the Strathcona example recommendation sys-
tem [15]. Strathcona utilizes only the structural facts it locates in the skeleton (the
developer’s class containing the skeleton, plus the skeleton’s supertypes; types used
in the skeleton; methods called), but this is often enough to locate even uncommon
examples. Strathcona was configured to weigh the importance of particular facts;
these heuristics were determined over time with informal experimentation.

The Evaluation Problem

Many aspects of Strathcona could be and were evaluated. For example, user studies
were conducted to determine whether developers would be able to interpret and
utilize the recommended examples. The generalizability of these studies was of
concern: they were expensive and focused on a small set of tasks that (while of
differing levels of complexity) were not definable as representative of all possible
tasks. In particular, to reduce variability between subjects, skeletons were provided
to the participants.

How Simulation Was Used

In order to generalize from these user studies, a simulation was conducted to
evaluate Strathcona’s ability to return appropriate examples given varying skeletons.

The general simulation procedure consisted of four steps: (1) code fragments of
between 10 and 20 lines in length were selected at random from the repository that
Strathcona was using (these were the expected recommendations); (2) the set of
structural facts used by Strathcona were extracted from the selected code fragment
(with references eliminated to entities that would easily identify examples, such as
private methods); (3) subsets of these filtered structural facts were selected to form
queries; and (4) it was recorded whether the Strathcona server was able to locate the
target answer amongst the top ten matches.
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The general procedure was followed in two variations: (1) all subsets of the
structural facts were used, even when these were clearly generic (e.g., calls to
methods on String) and (2) the structural facts were restricted to eliminate those
that were deemed generic, then all subsets of the restricted structural facts were
used. The purpose of the second variation was to determine how many important
facts needed to be known by a developer in order to locate the target answer.

A graph was provided for each of the two variations, in which the number of
facts in the query was plotted against the occurrence rate of the target answer, for
each of the (four) randomly selected code fragments.

Reported Threats to Validity

Although the simulation part of the evaluation was conducted by Holmes et al.
specifically to address threats to validity arising in other parts of their evaluation,
the simulation itself possessed three reported threats to validity. (1) It is unknown
if the queries (which are the essence of what is extracted from the skeletons)
that are successful in actually recommending the expected recommendation are
representative of the queries that a developer would form in practice. (2) The
examples selected for the simulation all contained slightly fewer than the average
number of structural facts. It is unknown if this biased the results in a serious way.
(3) The simulation focused on the APIs provided by the Eclipse IDE. Although the
paper describes informal experience with other APIs, it is possible that the results
are not representative of general APIs.

12.3.3 Recommending Dependency Treatments During Reuse:
GilliganCSuade

While software reuse has long been pursued for its potential benefits for productivity
and quality, traditional approaches require that the needed form of reuse of
functionality be predicted ahead of time and be explicitly designed for. When
unpredicted reuse scenarios occur, developers will often pursue a pragmatic process
of reuse, involving copying and modifying the source code that provides their
needed functionality.

During such a task, the developer attempts to balance the desire to reuse as much
code as possible that implements the desired functionality, with the desire to avoid
reusing as much irrelevant code as possible. A pragmatic reuse task involves the
developer navigating the source code for potential reuse, following dependencies
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between elements, and considering the cost of eliminating each element versus the
(future) cost of retaining each element. The Gilligan tool [14] allows the developer
to record their decisions about whether to retain or eliminate elements while
investigating the functionality to be reused; the result is a plan about the pragmatic
reuse task that can be semiautomatically enacted at any point, and atomically undone
if the results are unsatisfactory, to be revised when necessary.

The process of creating a pragmatic-reuse plan is an iterative one in which the
goal is to find the ideal dependencies at which to “cut away” unwanted functionality
while minimizing the effort required to repair or replace the resulting dangling
references. This is a complex decision process hampered by four factors: cutting a
given dependency may eliminate relevant functionality; cutting a given dependency
may incur high costs to repair the resulting dangling reference; not cutting a
given dependency may fail to eliminate irrelevant functionality; and not cutting a
given dependency may force us to cut a dependency in an even worse situation.
Analyzing the possibilities requires both local and nonlocal reasoning to determine
good dependencies at which to cut. Gilligan does not directly aid in making these
decisions, but only in recording them and analyzing whether the overall plan is
complete.

The Recommendation System

Developers are generally good at local reasoning about repairing dangling refer-
ences, and low-cost analyses are unlikely to improve upon the manual approach.
In contrast, nonlocal reasoning on the dependency graph is much more difficult as
standard tools provide at most localized views of this information. An opportunity
exists for a recommendation system that draws on knowledge of transitive depen-
dencies and a model of cost and relevance to suggest where good or bad cuts could
be made. This is the central idea of the GilliganCSuade tool [12].

GilliganCSuade takes a partial pragmatic-reuse plan and the dependency graph
of the system from which functionality is to be reused; it makes recommendations
to cut dependencies (reject the depended upon entity) or not to cut dependencies
(accept the depended upon entity). For a given depended upon entity, it may make
no recommendation about its treatment. The recommendations are revised as the
developer makes additional decisions or revises previous decisions.

These recommendations are based on two heuristic measures for each entity: its
structural relevance [25] and its reuse cost. The structural relevance (as defined by
the Suade tool [25]) is based on heuristics that attempt to characterize the local
shape of the dependency graph; dependencies from elements that possess fewer
dependencies are each deemed more relevant, and dependencies back to entities
already marked as being reused are also deemed more relevant. The reuse cost is
based on the number of descendants of a given entity in the dependency graph,
weighted by the length of the shortest path to each of them.
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The Evaluation Problem

Human participant studies involving the performance of pragmatic reuse tasks
are expensive to design and run, as the tasks cannot be trivial if they are to be
meaningful. A set of such experiments had been conducted previously [14] during
which interaction data from developers’ actions with Gilligan were recorded. Rather
than repeat such actual experiments again, it was desired to make use of the recorded
data. A recommendation system for these decisions had been specifically requested
by the study participants to enhance the usefulness of Gilligan.

How Simulation Was Used

Two simulation phases were performed. In the first phase, each experimental
session was replayed by executing the developer’s decisions in chronological
order, in order to reconstruct the partial pragmatic-reuse plans at each moment.
The recommendations that would have been displayed by GilliganCSuade were
computed for each instant at which a decision was actually made.

The sessions for which the data was reused ultimately resulted in successful
pragmatic-reuse plans; “correct” decisions were deemed to be those for which
at least 75 % of the developers agreed, and these were treated as the expected
recommendation in each situation. Each actual recommendation was thus compared
against the expected recommendation and the developer’s immediate decision,
which they sometimes changed (even multiple times) later. The quality of the
recommendations was reported in terms of agreement or disagreement with the
expected recommendations; the presence of the cases where no recommendation
was made inhibited the use of standard quality measures.

The second simulation phase was performed because the authors perceived that
the behavior of an actual developer in performing a pragmatic reuse task could be
quite different in the presence of the RSSE: the results of the first simulation phase
might have had little external validity. The second phase thus involved one of the
authors (Holmes) using GilliganCSuade to repeat the experimental tasks to see how
it would affect his decision behavior and whether the tasks would still be successful.

Holmes spent little effort confirming cases with recommendations and never
disagreed with these, but focused carefully on the (minority of) cases where no
recommendation was forthcoming. The result was successful completion of both
tasks according to the criteria of the original human-participant experiment, but at
the cost of a small expansion of the code having been reused.

Reported Threats to Validity

Holmes et al. [12] explained that their rationale for conducting the second phase
of the simulation was the concern that the presence of the recommendation system
could have affected the developer actions enough to have invalidated the use of
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the recorded data. Nevertheless, the second phase of the simulation involved only
one author following a largely mechanical procedure in order to gain confidence
that the results were promising. This involved a small set of tasks that may not
have been representative of all tasks, by a “participant” who possessed a biased
perspective.

12.3.4 Recommending Development Environment Commands

IDEs have grown increasingly complex. With their increased usage and increased
ease of extension, a plethora of tools have been added to them. While the existence
of the right tool for a given task is of benefit to the developer performing that task,
that benefit can be realized only if the developer is aware of the existence of the
tool, of how the tool can be activated, and of how to use the tool. At some point,
tools become hard to find within an IDE because of their large numbers: this is the
proverbial “finding a needle in a haystack.” If the developer knows that the tool
exists, simple navigation strategies like searching and browsing will likely suffice to
find it. But if the developer is unaware that a tool exists, that a better tool exists than
the one they are using, or that a simpler command exists for activating that tool, they
will not even know to perform a search or browse.

The Recommendation System

When a developer learns how to make use of a tool, their initial attempts can be
awkward and inefficient; upon discovering a more effective approach, they abandon
their original style of usage for the one that they see as better. This gives rise
to a detectable pattern over time. Patterns of interaction by the current developer
can be compared to such patterns from other developers. If those other developers
eventually abandoned a style of usage that the current developer is also following,
the improved style of usage adopted by those others can be recommended to the
current developer. This is the premise of the work of Murphy-Hill et al. [23].
Their proposed recommendation system is proactive: it observes the developer’s
interactions with an IDE and makes recommendations when it can.

The Evaluation Problem

Murphy-Hill et al. were in possession of a large repository of data concerning
developers’ interactions with an IDE. Their problem was to decide on an algorithm
(out of eight possibilities postulated) that would most effectively leverage this data
to recommend novel commands to developers and, ultimately, to determine whether
such a recommendation system would be useful in practice.
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How Simulation Was Used

Two simulations were performed. The initial phase involved an automated sim-
ulation in which k-tail evaluation (see Sect. 12.2.2) over the data repository was
performed. The second phase involved a human participant-based evaluation of the
usefulness of a set of recommendations; this also was essentially a simulation. Both
simulations focused on commands in the Eclipse IDE (e.g., commands involving the
use of CVS; commands involving the editing and refactoring of Java source code).

For the automated simulation, the general procedure was as follows. The data
repository was factored into interaction histories for individual developers. For
a given value of k, the last k commands discovered by each developer was
determined, by detecting the first occurrence of each command in the interaction
history for a given developer. (Developers without k command discovery events
were immediately eliminated from consideration.) The full interaction history for
a developer prior to the first of the k command-discovery events formed the
simulated history (i.e., training set) for the recommendation system. The expected
recommendations would then be the k commands themselves. The recommendation
system was configured in turn with each of the postulated algorithms. The authors
chose to suppress cases where one or more of the algorithms were unable to deliver
recommendations, for example, due to insufficient history in the training set.

Three variations on this generic procedure were followed. The standard variation
is as described above; it assumes that the first use of a given command led to
the developer deeming the command to be useful. Examination of the interaction
histories indicated that, in some cases, the command was not repeated again, and so
the assumption of usefulness was likely not correct. This led to two other variations:
(1) k-tail multi-use, in which commands that are not repeated are ignored and do
not contribute to the k commands sought and (2) k-tail multi-session, in which
commands that are not repeated in different development sessions are ignored and
do not contribute to the k commands sought. (The multi-session variation is strictly
more conservative than the multiuse variation.)

For the simulation involving human participants, a set of recommendations was
generated from the dataset by each algorithm and for each participant. Two pop-
ulations of participants were sampled: experts and novices. Each recommendation
was presented verbally to a participant who was asked to rate the novelty of the
command and to explain the rationale for this rating.

Reported Threats to Validity

Murphy-Hill et al. [23] report one key threat to validity for the automated simulation:
the inability to determine whether the recommendations were actually useful,
since the expected recommendations were constructed by inferring behaviors in
the previously recorded interaction traces. For the simulation involving human
participants, they report one other key threat: the fact that the recommendations
were delivered to participants by a human experimenter could have influenced the
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participant to be more willing to accept them; an automated RSSE would likely find
more resistance from its users.

12.4 Lessons Learned

Every nontrivial empirical study necessarily has some weaknesses: the space to be
explored is effectively infinite, while a study must be finite. Nevertheless, each of
the studies described in the previous section points to issues about which we need
to worry and strategies that we can apply to address these. We discuss here four
lessons we can learn from these studies.

12.4.1 Triangulation

One convenient but misguided interpretation of the papers described in the previous
section would be that simulations suffice for evaluation, and that through the use
of simulation, one can avoid user studies altogether. But simulations can only be as
good as the model, assumptions, and data that go into them. While being careful in
designing and running a simulation can go a long way towards the validity of its
results, this is not enough to ensure that some issue has not been overlooked.

Every empirical methodology has inherent strengths and weaknesses; this is
equally true of simulation. The strengths can be eroded by a poor study design,
and the weaknesses can be mitigated in some circumstances. Triangulation is an
approach in which multiple evaluations are conducted, each using different methods
and/or on different data sources in order to improve the generalizability of the
findings. When the threats to validity of the individual evaluations differ and the
results support the same conclusion, the threats are mitigated overall.

In the works on Strathcona, GilliganCSuade, and the approach of Murphy-Hill,
we see that simulation was used in combination with other studies for the sake of
triangulation. Sometimes simulation was used to mitigate the threats accrued from
other evaluations (in the case of Strathcona); sometimes simulation was used as the
first step in collecting evidence before a human-participant study was conducted (in
the other two cases).

In the work on eROSE, triangulation consisted of repeating the same kind of
study on multiple software systems and performing different kinds of study to
evaluate different aspects of the approach. Zimmermann et al. point out that their
methodology was unable to address the actual usefulness of the recommendations,
and further, that their study could be affected by bad developer decisions recorded in
history. The purpose of their study was to examine how often eROSE could produce
correct recommendations; there is no obvious alternative means to obtain a set of
expected recommendations for simulation purposes. Further triangulation involving
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user studies could help to mitigate these threats, but the contribution of their work
was already large, so it is not surprising that this last step was not taken.

It would be wrong to think that the authors of the work on eROSE chose the
wrong path for triangulation. In the other three papers, the overall study was smaller
and less thorough, sometimes necessitated by the available data source from which
to extract expected recommendations. In the end, it is easy to say, “they should
have done more studies”; it is much harder to judge when this demand is excessive.
Further studies beget further studies; such is the nature of science. We all have
limited resources to expend; how best to make use of those resources depends on
our goals and how important the answers are. As an area matures, it is natural for
reviewers to expect stronger results.

12.4.2 Quality of Real Data

The availability of real-world data with which to evaluate or populate a simulation
is an important factor in pursuing a simulation. As such, it is natural to believe
that whatever real-world data one has in possession will be good enough. Much of
science revolves around this fact: all real data is imperfect.

Most data that is used in evaluating or driving a simulation has been automati-
cally recorded by some program. All programs contain bugs. Any useful program
will execute on a real computer; real computers contain bugs. Humans make
mistakes, and this can affect the quality of any data that was written down by a
human.

All real data was recorded in a real setting. Particular people doing particular
things in a particular context and at a particular time. In using this data for other
purposes, one has to assume that differences between the original setting and the
setting being simulated are not significant, but this assumption can be false.

Sometimes the real data does not provide the information that is desired. In the
case of eROSE, Zimmermann et al. tell us that they would have liked to know
about the order in which entities were changed, but that this was not recorded and
no inference could be made to recover this information. There is no obvious way
to overcome this limitation, but it is also unclear that the limitation would be a
significant one, so following a more expensive route to collect this data might be
unwarranted.

In the case of the work by Murphy-Hill et al., the recommendations were not
received by the participants as well as had been predicted by the initial simulation.
The data quality could have been an issue. Murphy-Hill et al. assumed that evidence
of learning commands could be inferred from the available interaction traces; they
were surprised to find that some participants claimed that they were already using
recommended commands, as a recommendation should not happen in that situation.
Either the data was wrong, their tool contained bugs, or the participants’ claims were
false—all problematic cases to deal with. There is no obvious way that they could
have avoided this issue a priori. Perhaps with further study, the nature of the issue
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will be discovered as well as how it can be avoided. Another potential issue was that
there could have been a time gap between when the trace data was recorded, and
when the recommendations were made; in this time gap, the developers could have
discovered the command and started to use it. Ensuring that the data being leveraged
is very fresh and that it contains all of the participant’s interactions would be about
the only way to avoid this, but could be difficult to enforce in most studies.

12.4.3 The Importance and Dangers of Assumptions

We all make assumptions. Sometimes we are aware of our assumptions, and
sometimes we make them implicitly. Assumptions are absolutely needed when the
evidence available does not permit inference. But obviously, assumptions can be
wrong. When assumptions are explicit, one needs to decide whether it is worthwhile
to invest time into testing them. When assumptions are implicit, they cannot
be directly tested, so triangulation in general is the best means to discover any
consequences arising from false ones.

In the case of eROSE, assumptions were made about its usage scenarios. These
were necessary to drive the simulations; they were presumably derived from the
experience of Zimmermann et al. rather than actual data. While these assumptions
appear reasonable, there is no guarantee that they would really occur in practice
or that other important scenarios would not occur. This is an inherent weakness of
the methodology used that could only be mitigated through other methodologies or
other data sources containing direct evidence of such usage scenarios.

In the case of Strathcona, the sensitivity of the approach to the amount of input
facts was assessed through simulation. The simulation attempted to use as queries all
subsets of facts of a small set of examples. This implicitly assumes that these queries
are representative of what developers would typically provide. Perhaps a better
design would have been to non-exhaustively select subsets of facts from a larger
number of examples; this could have avoided the combinatorial explosion problems
arising from trying all subsets. Follow-on studies could have been performed on the
more problematic cases to see whether human participants could handle them well
enough.

12.4.4 Effects from the Presence of the RSSE

In most cases, the real-world data that a researcher uses in driving or assessing a
simulation was necessarily collected without the RSSE being present. The hope is
that the RSSE will not alter the essential decisions that were made, but perhaps
allow them to be made faster and with greater confidence.

In the case of GilliganCSuade, this assumption about the recorded data was
challenged. The second simulation phase found that the results from the tool seemed
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better than predicted by the initial simulation. The presence of the RSSE in the
decision process appeared to actually alter nontrivially the decisions made by the
“participant.” The effect at work could be that developers will make sub-optimal
decisions when a complex decision process is not well supported. Thus, the recorded
choices were not the “gold standard” that were assumed, but merely good enough
for the developers to have completed the task; the presence of GilliganCSuade
apparently improved the decision process. To determine whether this effect was real
or an artifact from a biased investigation would require follow-on study.

In the case of the work of Murphy-Hill et al., they point out the fact that their
simulation that involved human participants was not completely natural, as a human
was giving them the recommendations. Recommendations delivered by an RSSE
could be received with less trust, or be deemed annoying if they were delivered at
the wrong time. They suggest that social tagging of recommendations be supported
as a developer is more likely to pay attention to a recommendation seconded by a
trusted colleague.

12.5 Conclusion

Simulation is an important empirical technique used in many areas of science and
engineering. Simulation can serve to explore a complex system or to evaluate it.
Simulation involves the imitation of some part of a system, in order to avoid the
complexities, risks, or costs involved in directly evaluating the system.

We have specifically examined the use of simulation for the evaluation of RSSEs.
We have presented a general model of simulation for evaluation of RSSEs that
applies to a typical situation in which RSSEs are to be evaluated; this typical
situation is analogous to the standard setting of unit testing of software, with drivers
and stubs. Variations on this model were mentioned briefly, including the alternative
of simulating the RSSE itself to assess developer actions.

Four examples from the literature were described that involved simulation for
evaluation of RSSEs. Three of these involved the typical simulation scenario in
which the context of the RSSE was simulated to drive the actual RSSE. One of
them used the alternative simulation scenario of simulating the RSSE itself as well
as its simulation environment.

All empirical methodologies have strengths and weaknesses. A typical simula-
tion has the advantage that a much wider of range of behavior can be examined
than could be through user studies, at a lower cost, with greater control, and with
greater reproducibility. A typical simulation has the disadvantage that it involves
driving a model, which must be assumed to serve as a valid abstraction of the
system of interest; when this assumption fails to hold, the conclusions drawn from
the simulation may not be valid.

To mitigate this problem, simulations are often used in combination with other
forms of evaluation (i.e., in triangulation). Simulations are sometimes used to
generalize the results of human-participant studies. Simulations are commonly used
as a first step before more expensive, alternative methodologies are pursued.
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All the example RSSEs that we have described made use of real-world data
to drive their simulations. Real-world data has the advantage that it has not been
contrived, so it can be claimed to represent at least some aspect of the real
world. Unfortunately, real-world data does not eliminate the need to be cautious
in its application. Real-world data has to be collected and recorded and there is
no guarantee that this process is free of errors. The data may violate important
assumptions of the simulation, despite being “real.” The real-world context in which
the data was collected could be radically altered were the RSSE added to it, thereby
reducing the validity of the results of the simulation. Still, real-world data would
generally be more reliable than synthetic data, and thus is highly sought after. The
increasing availability of high-quality, real-world data needed to assess the quality of
recommendations will only serve to make simulation an even more feasible option
on the road ahead.

The future of simulation for evaluation of RSSEs looks bright. An interesting
possibility, hinted at in some of the studies described in this chapter, is to directly
simulate a limited range of behaviors of developers. From recorded traces of tool
interactions, one may be able to extract common behaviors and use these to model
the “representative developer” over an extended time. Time will tell if this is more
than a dream, but we believe that there is promise.

Overall, simulation is an exciting option with growing importance as an explo-
ration and evaluation technique for RSSEs.
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Chapter 13
Field Studies

A Methodology for Construction and Evaluation
of Recommendation Systems in Software Engineering

Ayşe Tosun Mısırlı, Ayşe Bener, Bora Çağlayan, Gül Çalıklı,
and Burak Turhan

Abstract One way to implement and evaluate the effectiveness of recommendation
systems in software engineering is to conduct field studies. Field studies are
important as they are the extension of laboratory experiments into real-life situations
of organizations and/or society. They bring greater realism to the phenomena
that are under study. However, field studies require following a rigorous research
approach with many challenges attached, such as difficulties in implementing the
research design, achieving sufficient control, replication, validity, and reliability.
In practice, another challenge is to find organizations who are prepared to be
studied. In this chapter, we provide a step-by-step process for the construction and
deployment of recommendation systems in software engineering in the field. We
also emphasize three main challenges (organizational, data, design) encountered
during field studies, both in general and specifically with respect to software
organizations.

13.1 Introduction

A field study is defined as a study that takes place in the natural environment of the
subject of the study rather than in a laboratory environment; it involves observations,
experiments, and interactions with participants. Field studies are a well-established
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research methodology in the social sciences. Field studies focus on what really
matters in setting the research agenda [22]; in this sense, field studies are critical
to understand the problems encountered in practice to come up with solutions that
can be turned into action by the practitioners.

This chapter presents a guide for conducting field studies in order to build and
evaluate recommendation systems in software engineering. Section 13.2 explains
why field studies are important for software engineering research, what their benefits
are in the context of recommendation systems, and how field studies should be
designed in terms of research worldviews, methodologies and data collection and
analysis methods. Section 13.3 provides a recipe for the reader who is interested
in building and deploying a recommendation system in a software organization
by explaining the main phases to be completed, and considerations regarding each
phase. Section 13.4 dives into the phases by discussing potential challenges that can
be encountered during each of them and providing solutions used in previous field
studies. During the completion of each phase, we explain one or two examples in
detail from previous field studies. In Sect. 13.5, we mention potential threats to the
validity and reliability of results in a field study. Finally, Sect. 13.6 summarizes the
chapter and provides suggestions for future field studies.

13.2 Understanding the Problem in the Field

Software development is a domain that involves complex interactions among the
product, the process that enables the creation of the product, and the people who cre-
ate the product and follow the process that takes place. In this complex environment,
there are many uncertainties about which we need to concern ourselves: software
continuously changes, and as it changes, it becomes increasingly unstructured;
software engineering is difficult, merely because the product is flexible, intangible,
and complex [45]. On the other hand, software engineering is one of the rare
fields where academic research overlaps with the needs of industry. Depending
on the research question, a field study in a software organization may involve
observing people or processes, reviewing code or documentation, collecting metrics,
interviewing people, and making a qualitative, quantitative, or mixed analysis.

Software engineering is challenging by its nature, and it is the very same nature
that makes software engineering a data-rich domain in terms of the artifacts and
decisions made daily. Therefore, there are already many recommendation systems
to assist software professionals in various activities, and new ones keep emerging to
address the needs arising from the ever evolving, complex, and heterogeneous nature
of software systems [35, 36]. Recommendation systems in software organizations
are built to support decision making under uncertainty and to ease the delivery of
a task or a process. The output of a recommendation system is used by all levels
of a development team to overcome technical challenges, that is, to efficiently
manage/organize technical resources, to improve the quality of the work, and to
find and solve problems in the process or in the code itself. As recommendation
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systems mature, they provide comprehensive insight about the corporate history
through various data analysis techniques. In this sense, recommendation systems
for software engineering are good examples of field studies in this domain.

Conducting field studies is advantageous both for researchers and software
practitioners. With field studies, researchers are able to understand the domain and
the main challenges for practitioners during software development, to collect real
data, and to propose simple solutions through different types of recommendation
systems (depending on the problem). Practitioners, on the other hand, can benefit
from field studies, more specifically from the outputs of field studies in the form of
recommendation systems, measurement repositories, etc. These systems can address
common problems (e.g., code completion [5]), as well as specific problems (e.g.,
prediction of code fragments that require performance improvement [18]) faced by
software practitioners in the field, and guide them in cases where the experience of
the user is insufficient to make a justified decision, or the required data processing
is intractable/infeasible in terms of time and resources.

In general, the benefit of recommendation systems in software engineering is the
reduction of time and effort needed for accomplishing the task at hand. Depending
on the specific problem, this saving can vary from a scale of minutes (e.g., API dis-
coverability [14], DebugAdvisor [2]) to months (e.g., performance debugging [18]).
In addition to this direct benefit, recommendation systems also have indirect
benefits during field usage, for example, increased developer productivity [5],
faster development and maintenance cycles [14, 18], improved bug fixing [2], more
accurate fault localization [3], and reduced workload and information overload [23].

Designing and conducting a field study needs to follow a consistent process.
Below, we briefly explain this process for researchers who would like to initiate
a field study in a software organization, as well as for practitioners who are the
main participants of a field study in deciding the research methodology and data
collection methods.

13.2.1 Research Philosophies

The research process involves deciding on which methodologies and methods
to be employed and how a researcher would justify the choice and use of the
methodologies and methods. One proposal for a framework has been made that
combines methods, methodologies, and epistemologies [10]. Method is defined as
the techniques or procedures used to gather and analyze data related to research
questions or hypotheses. Methodology is defined as the strategy, plan of action,
process, or design behind the choice and use of particular methods, and linking
the choice and use of methods to the desired outcomes. Theoretical perspective
is the philosophical stance informing the methodology, thus providing a context
for the process and grounding its logic and criteria. Epistemology is the theory of
knowledge embedded in the theoretical perspective and thereby in the methodology.
In other words, epistemology will underlie the entire research process and govern
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the particular theoretical perspective selected. The theoretical perspective will be
implicit in research questions, and it constrains the methodology, which is then
followed by the usage of methods that are consistent with the methodology.

Some researchers refer to epistemology by using different terms. Some call it
“worldviews,” meaning “a basic set of beliefs that guide action” [9, p. 6] and [15,
p. 17]. These worldviews are often shaped by the discipline area in which the
researchers are interested or by past research experiences. The worldviews will
lead to embracing a qualitative, quantitative, or mixed approach in the research.
Table 13.1 presents different classifications of worldviews, research methodologies,
and their corresponding methods. It also presents examples from software engineer-
ing for different research designs.

Before any empirical research begins, the researcher needs to decide what
worldview should be used depending on the nature of the research question of
interest. The researcher then decides which methodology to employ, consistent with
the worldview that also embeds the theoretical perspective. Next, the researchers
chooses the research methods to be used that are consistent with the methodology.
In empirical software engineering research, if a constructivist approach is taken, the
researcher formulates a hypothesis or question to test, then observes the situation,
abstracts observations into data, then analyzes the data, and draws conclusions with
respect to the tested hypothesis. In building a recommendation system for software
engineering, if a qualitative approach is chosen, the researcher would observe how
software teams work, attempt to understand the processes, collect data through
interviews, interpret the data gathered, and then build a recommendation system
to help practitioners determine the project cost or understand the reasons for a
defect/issue so that the recommendation system creates an agenda for change in
the process or team structure, or both.

There are four types of worldviews: post-positivist, constructivist, advocacy/par-
ticipatory, and pragmatic [9]. Post-positivists hold a deterministic philosophy in
which the problem reflects the need to identify and assess the causes that influence
outcomes. Positivist research is mainly used in the natural sciences and engineering,
including software engineering. Factual information in software engineering helps
organizations to establish controls, policies, and procedures.

The constructivist worldview, on the other hand, seeks a deeper understanding of
the world, and produces subjective and varied outcomes based on interpretations of
social systems, that is, people, their actions, and interactions with each other [4].

Advocacy is a research paradigm that aims to address the shortcomings of the
constructivist approach to initiate changes in favor of under-represented (marginal-
ized) groups in the society. In other words, the advocacy approach requires that the
outcome of research should have an action agenda to change the lives of participants,
institutions, and researchers [9].

Finally, pragmatism is problem-centered and derives from the real world’s
practice-oriented inquires. It is not committed to any one system of reality or
philosophy. Researchers believe that the truth is what works at the time and they
look both to “what” and “how” to do research [9]. Practices for conducting research
based on each of these worldviews are summarized in Table 13.1.
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Table 13.1 Research designs as epistemologies, methodologies, and methods [adapted from 9]

Research Design

Qualitative Quantitative Mixed

Epistemology

Constructivist, Advocacy/
Participatory Post-positivist Pragmatic

Methodology

Phenomenology; grounded
theory; ethnography; case
study; narrative

Surveys; experiments Sequential; concurrent;
transformative

Method

Open-ended questions;
emerging approaches; text
data

Closed-ended questions;
predetermined approaches;
numeric data

Both open- and closed-
ended questions; both
emerging and predeter-
mined approaches & both
quantitative and qualitative
data and analysis

Research practices

• Position the research
• Collect participant

meanings
• Affect the study by

personal values
• Study the context/

setting of participants
• Validate the accuracy

of findings
• Interpret data
• Create agenda for

change/reform
• Collaborate with

participants

• Test and verify
theories/explanations

• Identify variables to
study

• Interrelate vari-
ables in questions/
hypotheses

• Uses standards of
validity and reliability

• Observe & measure
numerically

• Avoid bias
• Employ statistical

methods

• Collect quantitative
and qualitative data

• Develop rationale for
mixing

• Integrate the data at
different stages of
inquiry

• Present visual rep-
resentations of the
studied methods

• Employ the practices
of both qualitative &
quantitative research

Example implementations in software engineering research

Cost/Development effort
estimation models; Rule-
based models

Predictive models using
regression analysis or data
mining

Hybrid Bayesian models;
Case-based reasoning

13.2.2 Research Methodologies

There are three kinds of research design: qualitative, quantitative, or mixed [9].
Qualitative research is a means to explore and gather in-depth understanding

about the phenomena or human behavior [9]. In qualitative research, there is a
complex and real-world setting for the research. The subject is a participant in the
research process. Research design evolves, and the researcher is inside the setting.
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The emphasis is on validity of the research. Case studies, narrative approaches,
grounded theory studies, and phenomenology are research methodologies that
follow a qualitative approach (Table 13.1). In software engineering, case studies are
popularly used among other qualitative approaches in order to study a contemporary
phenomenon in its real-life setting [55]. Case studies require the access to rich and
valuable information collected from a variety of data sources so that their outcomes
would reflect domain knowledge.

Quantitative research is a means to test theories or examine causal relationships
among variables [9]. In quantitative research, there is a controlled setting for
research, and the subject is an object of the research. The research design is
fixed and the researcher is outside of the setting. The emphasis is on reliabil-
ity and generalizability of the results. Experiments and surveys are quantitative
research methodologies, both of which are well recognized in software engineering
research [55].

Mixed research incorporates the elements of both qualitative and quantitative
approaches in order to overcome the limitations of a single research methodology,
that is, neutralize or cancel the biases in a single methodology with others [9].
Researchers may identify participants to study or research questions with one
method (e.g., a general survey conducted with a large development team), and use
the findings to ask the right questions for another method (e.g., a case study via
in-depth interviews with a small group). Alternatively, qualitative and quantitative
data collection methods can be merged into one database, or analysis can be made
to support quantitative data with qualitative findings [9]. Sequential, transformative,
and concurrent are three mixed strategies proposed so far in social sciences.

Field studies in the context of building recommendation systems in software
engineering should aim to understand the field in detail, define the problem, and
then propose the right solution for the problem at hand. Tight controls as in the
case of experiments might be counterproductive in this context. Thus, qualitative
approaches—such as case studies—are adopted more than experiments and surveys
in software engineering [19] in order to help build local models, so that local insights
can be further combined with quantitative approaches, that is, statistics, data mining,
to generalize for other settings.

For a more detailed explanation of research methodologies used in software
engineering, we suggest examining the book on experimentation in software
engineering by Wohlin et al. [55].

13.2.3 Research Methods

Research methods involve data collection, analysis, interpretation, and presentation
of results. Depending on the methodology chosen by the researcher, the research
method will differ. Quantitative methods require that empirical investigation
be based on statistical, mathematical models, and computational techniques.
The interpretation of data and its analysis change based on the size of data.
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For recommendation systems requiring data mining on large datasets, we
recommend reading the explanation by Menzies [30] in Chap. 3; for those using
small amounts of data for which heuristics should be utilized in place of online data
mining, we suggest reading the explanation by Inozemtseva et al. [21] in Chap. 4.
Qualitative methods, on the other hand, are based on observations, interviews, and
surveys with open-ended questions to find themes and patterns for interpretation.
For a complete list of data collection methods in qualitative research, we recommend
examining the article by Seaman [37].

In summary, selecting a particular research design is based on the research
problem. If the problem calls for explanation or theory testing, then a quantitative
approach is appropriate. If the problem calls for exploration and understanding of
the phenomena, then a qualitative approach is appropriate. If the problem is such
that one approach alone would not be sufficient to address, then mixed methods
are appropriate [9]. Field studies in the context of recommendation systems may
employ either research design. In the literature, both quantitative and qualitative
research design is employed in building recommendation systems. In many cases,
a recommendation system takes quantitative and qualitative data, uses data mining
techniques, and predictive analytics, or localized techniques with heuristics to make
a recommendation and then the system is further calibrated with expert feedback
(qualitative data again). During calibration, the system and expert (developer, tester,
manager, etc.) work in collaboration to better deal with the complexities of current
systems [39].

13.3 Conducting Field Studies: Step-by-Step Design Process

In a field study, a recommendation system typically goes through several iterations
of four steps: (1) planning and negotiation, (2) data collection and analysis,
(3) technology development (initial prototype of the recommendation system) and
calibration, and (4) deployment. In this section, we describe these steps and how
each step evolves in a field study by giving real examples from the literature.
Table 13.2 summarizes four main phases for building recommendation systems in
software engineering, and important tasks that need to be considered for each phase
in conducting field studies.

13.3.1 Phase I: Planning and Negotiation

Field studies are particularly useful in the context of recommendation systems,
since the aim is to propose a practical solution to a real challenge in software
organizations, and ultimately, to deploy this solution as a tool into existing systems.
To accomplish this, the initial steps of a field study identify business goals,
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Table 13.2 Main considerations within phases of construction and evaluation of recommenda-
tion systems in software engineering

Phase I: Planning and negotiation

- Identify business goals, challenges during software development
- Align objectives of field study with practitioners’ expectations
- Define roles and responsibilities of parties
- Initial negotiation between researchers and practitioners on the input, functionality, output
of the recommendation system

Phase II: Data collection & analysis

- Select data collection technique(s): Direct, indirect, independent, or mixed
- Select data analysis technique(s) depending on the selection above: Quantitative, qualita-
tive, or mixed
- Involvement of software practitioners into the discussion of data accuracy and analysis

Phase III: Building the recommendation system and local calibration

- Design the system in terms of input, recommendation engine, output
- Implement the recommendation engine
- Select the type of evaluation: Offline, user stories, online

Phase IV: Deployment of the recommendation system

- Integrate with existing systems: Standalone or plug-in
- Improve the system continuously through user feedback: Post-usage calibration

long-term and short-term strategies, and the challenges in a software organization.
Then, these business goals should be mapped explicitly to research questions.

During this step, direct interaction with software practitioners is essential.
Interactions through brainstorming sessions, formal or informal interviews, and
observations of existing development environments that show patterns of activities,
goals, and rationales are reasonable to understand the needs of practitioners.

In one longitudinal field study [47], a defect prediction model was built for a
large scale software organization in order to improve software quality by effectively
allocating testing resources. The researchers initially had project planning meetings
(so-called kick-off meetings) with the senior management, project leads, and the
members of development team to identify business needs and challenges in the
development life cycle. The research goals of the field study were also aligned
with management expectations, and the roles and responsibilities of both parties
(researchers and practitioners) were clearly defined.

In another field study [31] in a large software development organization, a
recommendation system was built to assign people throughout large software
development tasks with respect to their expertise. At the beginning, interviews
were held with geographically distributed development groups in order to learn
the existing problem and their expectations on a recommendation system. Based
on the interviews, the researchers realized that the existing techniques for finding
experts were highly uncertain and time consuming, and that they imposed a burden
on certain individuals (often, the software architects). So, a simple recommendation
system to locate the obvious expert was not desired. After initial interviews, the
objectives of this recommendation system (called Expertise Browser) were set as
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assigning experts to tasks quickly without imposing a burden on a few individuals,
and guiding users to find alternatives when some experts are not available.

After identifying the problem, negotiation with practitioners should be made
regarding the input required to feed the recommendation system, functionalities of
the system, the output given as a recommendation, and a detailed plan, that is, the
time that will be spent for data collection, analysis, and deployment. Field studies
require frequent communication between researchers and practitioners in every step,
such as data collection, building the recommendation engine, and reporting with an
interface. To avoid disappointment or dissatisfaction about the final output, initial
project planning meetings should be taken seriously.

13.3.2 Phase II: Data Collection and Analysis

Data Collection Strategies. Different data collection strategies are possible,
depending on the research approach selected (qualitative versus quantitative), and
research questions defined before conducting a field study. Direct, indirect, and
independent data collection strategies differ from each other in terms of how much
contact is required between researchers and practitioners [40].

Direct techniques require a direct, and often the highest amount of, interaction
with the practitioners, and hence they require more resources even though the
volume of data collected with these techniques is often small to medium [40]. Focus
groups, interviews, and questionnaires are three, among many, direct data collection
techniques, all of which are commonly used during the construction and evaluation
of recommendation systems in software engineering.

Focus groups are very similar to brainstorming sessions, but there is a focus on
a particular issue rather than generating as many ideas as possible [40]. Moderators
control the groups and make sure that everyone has the opportunity to participate
and share their opinions on that particular issue. Interviews are usually more
controlled than focus groups because the conversation between the researcher and
the respondent are often bounded by a set of questions. Interviews can provide
additional information if the researcher follows open-ended questions that allow
more interaction with the practitioners. Questionnaires, on the other hand, are
administered based on carefully written and ordered sets of questions [40].

Direct techniques are often applied either in Phase I to get general informa-
tion about the process, the product, and the people involved (see examples in
Sect. 13.3.1) or in Phase III to evaluate prototypes of recommendation systems
based on the assessment of practitioners (e.g., Sibyl [1]), or during both phases
(e.g., Expertise Browser [31]).

Indirect techniques, on the other hand, help researchers to gather data through
instrumenting systems that the development team actively uses (e.g., how frequently
a tool is used, the timing underlying different activities, the commands developers
write). These techniques require very little time from software practitioners and
hence, they are appropriate for longitudinal studies.
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There are also independent techniques that aim to collect the output and
by-products of development without any intervention by software practitioners.
Examples of such outputs are source code and documentation, whereas examples
of by-products are work requests, change logs, and build and configuration manage-
ment tools (data repositories). Data collected through independent techniques can
be then transformed to inputs of recommendation systems.

Recommendation systems in software engineering have become more popular
with the usage of publicly available data, such as source code and other repositories,
often collected via indirect and independent techniques [36]. With the adoption of
common software development interfaces, such as Bugzilla for issue management,
and Eclipse as a development and tool integration platform, it has become easier
to adopt indirect and independent techniques during Phase II in field studies.
Some examples of recommendation systems for which examples of independent
techniques, that is, embedded plug-ins for Eclipse, were used for data collection can
be found in Robillard et al. [36].

In field studies, it may be more cost-effective to implement standalone tech-
nologies that would seamlessly connect to instrumenting systems and by-products
of development in software organizations, and extract required data for the con-
struction of a recommendation system. These technologies help reducing additional
communication costs between different plug-ins and tools. Dione is an example of
a standalone tool that is designed to serve this purpose in software engineering [6]:
Dione collects raw data from multiple sources, that is, source code bases, version
control systems, and issue repositories, and transforms the data into metrics
representing software artifacts related to process, product, and people aspects.

In summary, it is recommended to follow a mixed data collection approach in the
construction and calibration of recommendation systems in software engineering.
For example, Sibyl is a recommendation system that was built in a field study to
reduce time and effort required to evaluate the importance or priority of a bug
report, and to decide which product component it affects as well as which developer
to assign that report [1]. The data used to build initial prototype of Sibyl were
collected through a web interface for Bugzilla, and the accuracy and usefulness
of recommendations were evaluated based on questionnaires with four development
teams. Authors selected questionnaires over interviews due to the fact that there
was not much possibility for direct interaction with the teams. Another example for
the usage of focus groups to tailor the recommendations based on domain specific
information gathered from developers can be seen elsewhere [17].

Data Analysis Techniques. Both qualitative and quantitative data analysis tech-
niques are widely used in conducting any type of empirical software engineering
research. Qualitative data analysis techniques are used for exploratory, confir-
matory, or grounded theory studies and for visualization [40, Chap. 2], whereas
quantitative data analysis techniques can be used for description, comparison, or
prediction [40, Chap. 6].

In field studies, depending on research questions and data collection method-
ology, researchers should choose data analysis techniques that are best suited.
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If direct techniques are used in the form of interviews, questionnaires, etc., rigorous
analysis is necessary and it often requires more time and effort than expected (e.g.,
transforming all responses in a survey to measurable units). In this case, researchers
also have the possibility to perform data analysis in parallel with data collection as
soon as significant amount of data has been collected [40]. However, if indirect
or independent techniques are chosen, depending on the research questions and
hypotheses formed at the beginning of research, quantitative analysis techniques,
such as appropriate statistical tests (considering distributional assumptions of data)
and data cleaning algorithms (noise detection or removal) should be used [55].

As a final point, in the context of recommendation systems, it is generally more
important and useful to discuss the results of data analysis with practitioners in
the field. Practitioners can tell researchers whether analysis results are accurate
portrayals of the existing situation or whether there are potential outliers or noise in
the original data. This also helps researchers choose appropriate analysis techniques
and algorithms when building the systems.

For a more detailed explanation of data analysis, we suggest reading the book by
Yin [57] to examine its role in case study research; the books by Wohlin et al. [55]
and Shull et al. [40] to study quantitative versus qualitative techniques in software
engineering; or the article by Lethbridge et al. [25] to choose a data collection
method in field studies and to decide the best analysis techniques by considering
the advantages and disadvantages of the selected method.

13.3.3 Phase III: Building the Recommendation System
and Local Calibration

Before building a recommendation system in the field, researchers should rigorously
work on the design in terms of input provided to the system, the output that will
be produced, and the engine that is the core part of the system calculating the
recommendations. In this section, we define these dimensions and give examples
about their implementation from recommendation systems in the field.

Robillard et al. [36] define input and output dimensions as follows:

• Input is the context of a recommendation system that is provided by the user
explicitly or extracted from system implicitly.

• Output is the recommendation that will be produced by the system, and it can
have two types: pull mode (for reactive recommenders), that is, producing the
output when it is requested by the developer (run only when the user asks for it);
or push mode (for proactive recommenders), that is, producing continuous output
(continuous and up-to-date feedback as new data come).

In a field study, input and output modes are often specified through initial
negotiations with practitioners, that is, based on real users’ specific needs, how much
novelty or risk they are seeking, and in what granularity or frequency they want to



www.manaraa.com

340 A. Tosun Mısırlı et al.

get recommendations. However, these can be rough estimates at Phase I, or subject
to change during Phase III (calibration) based on practitioners’ experimentation with
the system and opinions after usage.

The recommendation engine, on the other hand, is the real intelligence provided
by the researchers during Phase III. This dimension mainly consists of data
gathering and analysis, implementation of a model with predictive power, and
selection of a ranking algorithm that systematically lists recommendations from the
most valuable to the least. The engine can be evaluated in several ways [38]: offline,
user studies, online. Selection among these evaluation techniques are based on the
availability of necessary data or the infrastructure in a field setting.

Offline. This type of evaluation is done without user interaction, using existing
datasets from public data repositories, open source systems, or using a pre-
collected dataset from a software organization. The accuracy of the system is
initially evaluated during offline experiments. In doing so, researchers assume
that the data available are similar enough to what will be provided after the
system is deployed. Offline experiments are useful to test a set of candidate
algorithms with a lower cost compared to the other ways of experimentation.
For example, simulations are held offline to evaluate recommendation systems
by using a repository data (preferably real data from an organization) that
contain both examples of real queries and the corresponding examples of
expected recommendations (Walker and Holmes [54] provide more information
on simulation in Chap. 12).

User Studies. These are conducted by selecting a small group of subjects to use
the system or a pilot project (component) among many projects (components
of a large project) in a software organization. While users perform their tasks,
researchers may record users’ behaviors, collect statistics, and gather feedback
after the usage [38]. For example, a recommender called APIExplorer was evalu-
ated through a pilot study with 32 sessions of participants [14]. APIExplorer was
developed as a feature in Eclipse IDE that discovers and recommends methods
or types in APIs, which are not directly reachable from the type a developer is
currently working with. During the pilot usage, real-life APIs were selected to
see how the model would perform, were it deployed, and it was calibrated with
both algorithm refinements and user feedback. Other examples of user studies
can be found for the selection of a set of components of a large project [47], and
for the usage of focus groups to tailor the recommendations [17].

Online. This type of evaluation is done when the system is used by real users that
perform real tasks. It is most trustworthy to compare different ranking algorithms
online, learn the users’ context or evaluate the user interface, yet not very easy to
apply with real users in a software organization. Online evaluations are by nature
feasible only after the recommendation system is deployed. For example, a code
completion recommendation system can incorporate two different algorithms
(providing two different recommendations) and randomly switch between them
while a developer is using the IDE, and at the same the system can log user
interaction, that is, to learn which algorithm’s recommendation is useful, for
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calibration. One example for online experiments is reported by Ye and Fischer
[56], in which they proposed a recommendation system called CodeBroker to
locate and propose reusable components by using developers’ partially written
programs. The system builds user models, and implicitly updates them when
it observes that software developers reuse a component during programming.
Components that have been reused more than X times by a developer are
considered well known and they are not recommended to the developer any more.

13.3.4 Phase IV: Deployment of the Recommendation System

Deployment is hard and it requires trust in the recommendation system. Therefore,
we have seen very few examples in the literature describing evaluations based on
deployed models and real usage after conducting a field study. The main points in
the process of deployment can be summarized as follows:

Integration with Existing Systems. Depending on the design of a recommendation
system, it can operate either independently as a standalone application [6] or as
a plugin [14, 23] closely attached to development environments or other systems
that are actively used in a software organization. In both cases, the system should
be fed with data required for operation. Therefore, as the first step before deploy-
ment, all systems which a recommendation system communicates with should
be clarified by discussing with development teams. Often, this communication
has been handled during a pilot study, but scaling up to large systems may need a
new design. For example, a recommendation system called Mylar was designed
to improve the productivity by monitoring programmer’s activity through filtered
and ranked information that is presented in a development environment [23].
The deployed version of Mylar (renamed Mylyn) has currently been in use
by thousands of programmers. During integration, a bridge architecture was
designed to handle the communication and interaction between existing systems,
historical storage, and Mylyn. The performance of the communication between
systems was also improved by generating mechanisms for storing and collapsing
interaction logs.

Post-usage Calibration. Even though a recommendation system is calibrated
multiple times during offline experiments and user studies, new requests may
arise after deployment. In the case of Mylyn [23], the authors realized that
daily usage revealed uncovered tasks and misconceptions about how developers
work on related tasks. So, they calibrated the tool by adding clusters to cover
related tasks. In other systems, such as DebugAdvisor deployed in Microsoft [2],
the tool can be calibrated based on both qualitative feedback gathered from
users through surveys and quantitative data collected from usage logs. In
DebugAdvisor, the authors let users flag recommendations of the tool as useful
or not through a user interface, and the system automatically self-adjusts in
future recommendations. As mentioned earlier, online experiments are intended
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to calibrate a recommendation system in real time, which can only be done after
the system is deployed. Thus, data stored in logs as users select, rank, or filter
some of the recommendations (e.g., CodeBroker [56]) can be used to calibrate the
deployed system simultaneously compared to post-usage feedback in the form of
surveys.

13.4 Challenges in Conducting Field Studies

During the step-by-step process required to build a recommendation system in a
real setting, researchers can encounter several challenges that may slow down or
interrupt the activities. These challenges can be classified into three: organizational
challenges, data collection and quality challenges, and design challenges.

In this section, we give examples for these challenges at each step of the
recommendation system building process.

13.4.1 Organizational Challenges

Organizational challenges reveal themselves mainly in the form of resistance by
software teams to actions needed of them (conducting interviews, surveys with
the team, or asking manual work from the team) for building recommendation
systems; or in the form of cultural issues, effect of size, or software development
methodology used that would affect the process of building such systems.

Phase I

Initial meetings with senior management are essential to define business needs
and to negotiate about the recommendation system. However, it is not sufficient
to convince only senior management in software organizations. The success of a
field study highly depends on the willingness of participants from all levels (e.g.,
project managers, designers, analysts, developers, and testers) who take part during
construction, calibration, and usage of a recommendation system. Technical staff
are more likely to know about software artifacts that are actively used during
development (e.g., tools, usage logs, documentation, configuration management
systems) that are also required to build a recommendation system. Moreover,
recommendation systems often target the development team as real users, and hence,
their initial motivation and knowledge about the context, process, and possible risks
would ease the construction and deployment of these systems. A large kick-off
meeting consisting of software engineers, that is, designers, analysts, developers and
testers, junior and senior managers as well as researchers is necessary to overcome
these challenges in initiating a field study. It is crucial that the recommendation
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system aims to make life easier for software engineers (e.g., analysts, designers,
developers, testers, etc.). Otherwise, it is impossible to integrate the usage of a
recommendation system into a company’s development lifecycle, even if senior
management approves the recommendation system during initial meetings. It is
very likely that resistance of developers toward the usage of the recommendation
system will affect the decisions of senior management in the long run. Therefore,
while building recommendation systems, a “bottom-up” (from development team
to managers) approach should be preferred over a “top-down” (from managers to
team) approach.

A recommendation system will be useful only if it provides solutions for
company’s existing and significant software engineering problems. Therefore,
identification of these problems is crucial for the success of the field study through
interviews, questionnaires, and focus groups. Below, we summarize potential
challenges regarding these techniques during Phase I:

Scheduling a Meeting. It is often challenging to schedule a focus group, or one-to-
one interviews due to the busy schedules of developers. Managerial support usually
helps the researchers to solve such problems. Developers should be informed about
the importance of these meetings as a chance to express their needs, and to point out
major challenges in their daily tasks. Alternatively, questionnaires can be conducted
online, and hence, developers have the freedom to respond to the questions during
their spare time.

Meeting Agenda. Initial meetings, or interviews can become too unfocused, unless
the moderator is well trained. People may have the tendency toward remembering
events that are meaningful to them, or tasks that they spent more conscious effort
than others (e.g., [25]), or with which they are more experienced. For instance,
according to a test lead, allocation of testing resources may be a more significant
issue compared to others. On the other hand, from senior management’s point
of view, the most significant problem may be the cost estimation of a software
project. To avoid general discussions, the main problem that will be addressed in
a recommendation system should be clearly specified. Researchers can also employ
multiple methods, such as questionnaires, interviews, observation/shadowing, and
investigation of quantitative data from work databases, to mitigate potential prob-
lems due to biased data, that is, triangulation [40].

Selection of Participants. Another issue arises due to the fact that only a subset
of the development team will be able to present in these meetings; this is called
convenience sampling [55]. Software engineers and managers who are voluntarily
involved in these meetings may cause a self-selection bias [25, 40] because
they may have different characteristics from the whole population in a software
organization. Therefore, problems indicated by these participants may not reflect a
company’s actual software engineering problems. Conflicts arising due to selection
of participants can be resolved through the analysis of company’s annual reports,
and by consulting senior managers in the organization.
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Phase II

Data collection techniques, which are employed to build recommendation systems,
generally involve analysis of documents, source code, and history logs that are
obtained from work databases and configuration management systems. Yet, there
are situations when recommendation systems may also require human intervention,
that is, direct or indirect intervention from real users, especially for evaluating the
systems or further calibration. In such situations, user opinions can be collected
through questionnaires and interviews. However, interviews are costly and time
consuming. Prior to interviews, appointments need to be scheduled, and usually
the researcher needs to spend a lot of time in the field to collect responses of
practitioners. Software engineers, on the other hand, will exhibit resistance to such
interviews due to their heavy workloads and tight schedules while rushing for the
next release of the software product.

Another issue arising from organizational challenges is the “missing data
problem”. Data collected to feed the recommendation system might be partially
or completely missing in the field, or there might be no defined process inside
the development life cycle that force developers to manually enter comments and
required information into the company’s work databases, such as configuration
management systems. For instance, recommendation systems that predict software
defect proneness might suffer from lack of information regarding defective files in
organizations where changes (commits) in the version management system are not
matched with bugs. In such cases, researchers may propose a process change in
software development lifecycle in order to handle missing data [47]. However, it is
still very likely that development team would not volunteer to increase their daily
workload, which may lead to termination of such projects [48].

In large software engineering organizations, the work performed by software
engineers is often managed carefully through problem reporting, change requests,
and configuration management systems. The rest of the information (e.g., descrip-
tions and comments) needs to be entered into systems manually. When there is
little control over the quantity and quality of manually entered information, it is
very likely to have empty data-entry forms. Moreover, some fields might be filled
in different ways by different developers. Comments entered by developers might
contain cryptic abbreviations, which would be expected to form a consistent picture
only in the minds of the software engineers who originally wrote them. In such
cases, one solution would be to consult the comment owners. However, there are
also some situations when a record is old, or the software engineer who worked
on it is no longer available. Then, data cleaning techniques should be employed
to filter these records from the training data of the recommendation system (see
Chap. 3 [30]).
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Phase III

A successful recommendation system should align with the goals of the software
organization. During Phase III, developers should work with practitioners to ensure
this alignment. In this section, we discuss the challenges related to the development
methodology, organization size, and culture of the organization that may affect
Phases III and IV of a recommendation system.

Software Development Methodologies. In order to align with organizational
goals, a recommender should target one or more parts of a development methodol-
ogy and provide a cost effective alternative by automating or reducing the workload
related to those parts. The employed software development methodology provides
clues for solving some of the concerns of the organization. It should be noted
that the particular implementation of a methodology in an organization may differ
significantly from its textbook definition. Therefore, it is beneficial to observe the
actual setting, or at least the most relevant phase related to the recommendation
system.

Release cycles and development phases change dramatically between iter-
ative/agile and waterfall-like methodologies [45]. In traditional methodologies,
design, development and testing are clearly separated at least in theory. In this case,
providing detailed reports to guide and increase the efficiency of the next phase
may be beneficial. However, in agile development, software phases tend to overlap
with each other, and instant recommendations during the iterations may be a better
approach compared to recommendations for each phase.

An example of such approaches is RASCAL [29], a recommendation system
developed to propose reusable code snippets from the source code repository.
The authors initially discussed various shortcomings of the agile methodology,
such as lack of support materials and documentation in agile projects. Afterwards,
they showed how their recommendation system addresses these shortcomings by
proposing reusable snippets in the source code to developers with no support
documents.

Organization Size. Size (the number of people involved) is an important charac-
teristic of groups, organizations, and communities in which social behavior occurs.
Size is also an indicator about the complexity of an organization [13].

Organization size may affect the organizational needs in several ways. The
complexity that emerges with size hinders the capacity of the organization to change
fast. Every small change may be politically challenged by cliques that attempt
to keep the status quo [12]. These political challenges may complicate getting
organizational data to calibrate the recommender and setting up (implementing and
integrating) in software organizations. In such cases, trust metrics may be defined
for a recommendation system to estimate its real value for an organization [28].

Organizational Culture. Culture is a broad term with different definitions
proposed by different sociologists. For instance, Gudykunst et al. [16] defines
culture as the systems of knowledge shared by a relatively large group of people.
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In order to build a successful recommendation system, one should understand
the organization’s systems of knowledge, that is, the organizational culture.
Organizational culture may affect the knowledge needs and user interface
expectations. For this reason, Chen and Pu [8] propose a survey-based approach to
understand the key organizational characteristics before building a recommendation
system.

Hu [20] defines five dimensions in the organizational culture. Three of the
proposed dimensions affect the capacity of a change in an organization:

Term Orientation. Term orientation is the relative importance of future for an
organization. Long-term-oriented organizations attach more importance to the
future, and foster pragmatic values oriented toward rewards, including persis-
tence, saving and capacity for adaptation. In short-term-oriented organizations,
values promoted are related to the past and the present, such as steadiness and
respect for tradition. Long-term-oriented organizations introduce new ideas to
the organization, such as a new recommendation system, relatively easier than
short-term-oriented organizations. Field studies who successfully implemented
a recommendation system in software organizations are often conducted with
long-term-oriented organizations, but such organizational characteristics have
not been mentioned in many field studies.

Uncertainty Avoidance Index. Uncertainty avoidance index defines the capac-
ity and willingness of organizations to deal with an uncertain environment.
Uncertainty avoidance index may affect the expectation of a company from a rec-
ommendation system. Organizations with high uncertainty avoidance index try to
minimize the occurrence of unknown and unusual circumstances and to proceed
with careful changes step by step by planning and by implementing rules, laws
and regulations. In contrast, low uncertainty avoidance organizations accept and
feel comfortable in unstructured situations or changeable environments and try
to have as few rules as possible.

Power Distance Index (PDI). Power distance is the extent to which the less
powerful members of organizations accept and expect that power is distributed
unequally. Organizations with high PDI depend on the decisions of a few
influential people. In these organizations, the number of people that must be
convinced about the benefit of a recommendation system is low, but if the
influential people leave, there is a risk of losing support entirely. On the other
hand, organizations with low PDI tend to make the decisions collaboratively. In
these organizations, convincing the entire organization about the benefits of a
recommendation system is harder, but the risk of employee turnover affecting
the support is low.

Phase IV

The main goal of recommendation systems in software engineering is to help
developers through decision making by intelligently narrowing down all possible



www.manaraa.com

13 Field Studies 347

alternatives to solve a specific problem, and providing simple, easy-to-use and
actionable recommendations. While doing that, recommendation systems should
communicate with existing systems to collect data, analyze patterns, run its predic-
tion engine, store results and report through a user-friendly interface. Unfortunately,
due to complexity of the engine and operations, these systems can become too
complex and cumbersome.

Besides, these systems often require calibration, in the form of updating the input
(data) or adjusting the granularity of the output, at several times during their usage.
However, in many software organizations, there is almost no personnel qualified as
data analysts, who can understand the underlying mechanism of recommendation
systems, evaluate outputs, and decide when to update input data, how to improve the
performance, and to take actions accordingly. The combination of lack of experts
in software organizations and complex and heavy systems affects not only the
deployment phase, but also the post-deployment/usage phase. Possible solutions to
these challenges can be to design systems with simple and actionable inputs as well
as self-adjustable (automatic calibration) based on new data or user feedback.

Even when the precision of a recommendation system is high and reliable, users
in a software organization may not trust the recommendations [32]. Thus, they may
not feel like the recommendations are useful to help them solve some of their
daily challenges. To increase trust, and hence, usage of these systems, software
professionals offered some solutions, such as simulating social interactions between
peers in a recommendation system, or giving recommendations based on what peers
in development teams do or other experts do [32].

13.4.2 Data Challenges

Data challenges are potential problems that can be encountered while accessing data
repositories, or related to the quality or accuracy of data that are extracted from these
information sources.

Phase II

“Security and privacy issues” are very likely to arise since building recommendation
systems requires access to instrumenting systems and by-products of software
organizations, such as source code, documentation, and configuration management
systems. Organizations may not be willing to share such data with researchers due
to security and privacy issues. Therefore, during initial meetings and discussions,
solutions should be found to collect data without violating the company’s privacy
and security policies. For instance, one or two people from the company’s technical
staff can be trained to extract required data from available resources to share it
anonymously with researchers.



www.manaraa.com

348 A. Tosun Mısırlı et al.

In addition to being related to organizational challenges, the “missing data
problem” can also be categorized as a data challenge. Even if organizational
challenges are resolved, that is, the development team agrees upon a change
in the development process, it will take time to collect enough data to build a
recommendation system.

For example, in Tosun et al. [47], the data collection step was problematic
at the beginning since changes in the version control systems were not properly
matched with bug reports. The researchers called for an emergency meeting with
senior managers and the development team to explain the problem and its effects
on building a recommendation system to predict pre-release software defects. After
this meeting, a process change has been adopted, initially at pilot projects, such that
developers have to provide the issue ID and additional comments about the reason
of change, when they make a commit to the version control system. However, since
data collection would take significant amount of time, in order to minimize time
loss, the researchers proposed an alternative solution. This alternative solution was
using cross-company (CC) data [50] in order to build a prototype recommendation
system. In other words, a two-phase approach was employed: (1) the researchers
used imported CC data, which were filtered via the k-nearest neighborhood (kNN)
algorithm, to build the recommendation system; and (2) the organization started a
data collection program. Phase two commenced when there was enough local data,
namely “within company” (WC), to build the final system. During phase two, the
organization would switch to new defect predictors learned from the WC data.

In the empirical software engineering literature, some imputation methods have
been employed to handle the missing data problem in cost estimation models [7,
33, 46, 51, 52]. Imputing means to fill missing values by considering the underlying
missing value mechanism [26]. In many cases, data are missing due to high data
collection costs [11]. Expectation maximization methods, such as EMMI and EMSI,
are very powerful imputation techniques such that the recommendation systems
built with imputed data can still achieve very high accuracy rates [26, 52].

13.4.3 Design Challenges

Finally, design challenges are related to issues—which should be considered
before building a recommendation system—affecting the performance, usability,
and reliability of its output.

Phase III

There are many potential design challenges during the building phase of recom-
mendation systems. However, very few field studies mention these challenges. In
this section, we provide a partial list of common challenges based on prior studies
on the design of recommendation systems:
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Scaling Challenges. Large organizations tend to have complex and large software
repositories and hence, dedicated specialists for configuration management.
Large software repositories provide rich input data to recommendation systems,
yet cause different challenges during feeding the system with historical data.
A system tested on a 100 kLOC repository developed by 5 people may not work
for a 10 MLOC repository with multiple branches and 10C years of development
history developed by 1,000 people. Scalability is an important challenge for rec-
ommendation systems just like any other software. Some algorithms scale easily
while others fail dramatically when scaled even on the most advanced hardware.
On the other hand, data storage needs may get very high in a real usage scenario
or number of concurrent users may freeze the system. If the recommendation
system runs on a client machine, scalability problems may force the developer to
terminate the application rather than wait for a response. It is easier to address
possible scalability issues during the design phase of recommendation systems in
software engineering. Client–server workload distribution, multimachine scaling
availability, and data storage estimation are some of these issues that must be
considered in order to avoid scalability problems [27].

Data Privacy Challenges. Privacy is a common concern for everyone in the
digital age. There should be a frank explanation of what the recommendation
system can and will do with the extracted data in order to avoid the privacy
concerns. If a clear privacy statement is not in effect, people may think of the
software as a modern Big Brother microphone even for the most innocent of
recommendation systems. Therefore, every recommendation system should have
a clear and transparent data privacy policy [34].

Usability Challenges. Usability is a common issue for software systems. A rec-
ommendation system should be easy to configure and should provide actionable
outputs. Visualization, live notifications, and a user-friendly interface may
dramatically affect the usage of a system. In this regard, observing work patterns
of the real users of a recommendation system, and early mock-up designs help
researchers to test and improve the usability of the system [24].

Excessive Localization Challenges. Specific artificial scenarios may overestimate
the model performance during beta testing. User trust in a recommendation
system may significantly degrade if the system fails in very common, simple
scenarios in reality [38].

Phase IV

While the design of recommendation systems in terms of input, output, and
the engine was explained earlier, a redesign approach may be needed before
deployment. During this process, researchers often come across challenges, such
as scalability, privacy, robustness, and adaptivity [38]. Privacy in terms of data and
user profiles and scalability have already been discussed in Sects. 13.4.1 and 13.4.2.
Robustness is necessary to provide stability in the presence of fake information
provided by developers. Sometimes, developers may try to fake such systems to
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see how they behave in the presence of noisy or wrong data. Another situation can
be providing stability of the system under conditions when there are lots of user
requests. Before deployment, tests are done with a small set of practitioners, and
hence, the system may not operate properly when its client runs on hundreds of
developer machines.

Adaptivity is another issue related with rapid changes or shifts in the input data
provided to recommendation systems. In general, recommendation systems should
adapt themselves to unusual events, like a system recommending news to readers
may shift its focus for a short period of time due to a disaster [38]. In software
engineering, a large-scale project with many connected components may produce
a lot more development logs than usual, and hence it may require different recom-
mendations on topics, such as failure-proneness or reusable components. In such
cases, a recommendations system should adapt itself to such large amounts of data
through filtering or adjustments in existing algorithms. In some cases, additional
offline experiments can also be conducted to compare different algorithms.

13.5 Methodological Issues

In empirical software engineering research, research design should be consistent and
follow certain protocols depending on the research methodology. In this section, we
mention potential threats that must be addressed in a field study in order to increase
the validity and reliability of results. It must be noted that there are many aspects that
need to be considered in an empirical research depending on the methodology (e.g.,
survey in an organization, field experiments for comparing different approaches,
multiple case studies), and hence we suggest that the reader study the empirical
software engineering literature [e.g., 22, 53, 55].

While building a system, tool, or experimenting on a new technique in the field,
it may not be necessary to derive general conclusions. However, depending on the
experimentation type (e.g., online experiments, offline experiments, user studies),
possible threats to the validity of the results should be considered as early as
possible, generally at the planning phase. For example, when an initial prototype
of a system is going to be built using offline experiments, internal, construct,
and conclusion validity should be considered [55, p. 102]. Or when a qualitative
analysis as a case study is conducted to make early analysis on the prototype, case
study protocols, hypothesis analysis, and other factors should be considered [57]. If
researchers aim to achieve more general conclusions based on multiple case studies
or the field usage, external validity issues should be considered [55]. Moreover,
research design with cause and effect constructs should be selected by considering
replication of the same design on different settings [40, p. 365].

Field studies require involvement of human subjects, in addition to collection of
information that can help identifying individuals through examination of software
artifacts (e.g., source code and documents). Therefore, ethical issues should be taken
into consideration. Researchers who do not follow mandated ethical guidelines,
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risk losing the cooperation or honesty of participants [41], as well as losing
access to funding and other resources [42]. In the empirical software engineering
literature, there are some guidelines to help researchers deal with ethical issues
while conducting field studies [e.g., 43, 44, 53].

In a field study, there is one major issue affecting the whole process from
planning to design of experiments or systems/tools, or from evaluation of results
to deployment: researchers. It is very critical to have domain knowledge, that is,
characteristics and problems of the domain, experience about organizational dynam-
ics, or to have the ability to observe and interpret activities through qualitative and
quantitative data in a field study. Researchers who aim to implement recommenda-
tion systems in real settings must combine their knowledge about empirical research
methodologies with their previous knowledge about the dynamics of software devel-
opment, and interpret what they observe to provide useful and practical solutions
for practitioners. In addition, researchers must be careful about the impact of their
own bias when preparing questionnaires, conducting surveys with practitioners, and
interpreting analysis results. Shull et al. [40] briefly defines researcher bias, giving
suggestions to avoid this throughout questionnaire construction.

13.6 Conclusion

In this chapter, we have discussed field studies in the context of recommendation
systems in software engineering. Our aim is to guide researchers step by step
in how to conduct a field study on building recommendation systems. At the
beginning of this chapter, we highlighted the importance of having a research
thought process and its consistency in order to put field studies into perspective.
Then, we highlighted potential challenges throughout this process and suggested
solutions to overcome some of these challenges in software engineering. Our
research has been on building recommendation systems with industry partners
for years. We have conducted many field studies, and deployed recommendation
systems in industry. Some of these models/systems were successful, and some were
not. The aftermath of our experiences over the years shows that conducting field
studies is a rewarding experience both for researchers and practitioners. Software
engineering, specifically the area of recommendation systems, is a rare topic where
researchers and practitioners can work together to solve problems in the domain.
We suggest that recommendation systems should be built for the “men in the
field” (analyst, developer, architect, tester) as part of their routine tasks as tool
support/plugin [48]. We envision that such a plugin should give reasons regarding
causalities that are mapped to business objectives and hence, the output of a
recommendation system should be easy to interpret and actionable. Field studies are
the only way researchers can understand the domain and propose technical solutions
for real needs of practitioners. We have seen that it is easy to overcome technical
challenges; however, social, organizational, and cognitive challenges are the ones
that make the adoption and usage of recommendation systems difficult [48]. That
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is why we need to conduct more field studies to explore what is out there, and how
we can simplify a problem and propose simple solutions. Field studies will help us
understand some of the areas that were overlooked such as modeling people aspects
of software development in building recommendation systems, or combining human
social interactions with code dependency structure to connect the dots.

Lack of generalizations in field studies is a long debated topic in empirical
software engineering. Isolated case studies only show benefits of a recommendation
system in a particular context. However, as researchers we can use the synergies
of other techniques such as machine learning/data mining to find common patterns
and contexts, and to make generalizations from local models. Such a combination
of software engineering and machine learning can help decision makers to access
enormous amounts of data for analysis and to remove errors in their thinking
process. Researchers, by building recommendation systems as tools, would enable
practitioners to query a huge database of different contexts and organizations for
making recommendations [6, 49]. Recommendation systems should not be built
as offline number crunching experiments. In order to build a theory, we need to
understand the underlying concepts, and combine them with available data and
models [49]. In this sense, field studies are the only way to discover concepts,
assumptions, and limitations.
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Chapter 14
Reuse-Oriented Code Recommendation Systems

Werner Janjic, Oliver Hummel, and Colin Atkinson

Abstract Effective software reuse has long been regarded as an important
foundation for a more engineering-like approach to software development. Proactive
recommendation systems that have the ability to unobtrusively suggest immediately
applicable reuse opportunities can become a crucial step toward realizing this goal
and making reuse more practical. This chapter focuses on tools that support reuse
through the recommendation of source code—reuse-oriented code recommendation
systems (ROCR). These support a large variety of common code reuse approaches
from the copy-and-paste metaphor to other techniques such as automatically
generating code using the knowledge gained by mining source code repositories.
In this chapter, we discuss the foundations of software search and reuse, provide an
overview of the main characteristics of ROCR systems, and describe how they can
be built.

14.1 Introduction

Although the idea of software reuse is not new, it has yet to take off in practice.
The basic problem is that the perceived benefits of systematic software reuse still
do not clearly outweigh the effort, risks, and uncertainties involved. Developers are
faced with the dilemma of whether to first create a detailed system design and then
try to find matching coarse-grained components relatively late in the development
process or to invest a great deal of effort discovering what components already
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exist and then try to tailor and combine them to meet the requirements. In either
case, it is not always certain that all system requirements can be fulfilled and
that something reusable can actually be found. It is therefore no surprise that the
reuse approaches that have recently gained the most attention are pragmatic reuse
approaches [10] that focus on the non-preplanned reuse of source code assets mainly
during implementation.

Regardless of the exact motivation for reuse, researchers and practitioners have
traditionally faced three main obstacles to implementing an effective reuse program
for mainstream software development:

• The repository problem [8, 29], that is, where to find a sufficient amount of
reusable material

• The representation problem [9], that is, how to optimally store and represent the
reusable material

• The retrieval problem [25], that is, how to formulate and execute queries for a
repository in a simple and precise manner

A great deal of progress has been made in all these areas recently (partly due to
the open source “revolution” that made literally millions of potentially reusable files
freely available), and new solutions to these problems laid the foundation for a new
generation of internet-scale software search engines.

Although software search engines are an essential prerequisite for reuse recom-
mendation tools, in their simple (mostly web-based) form they cannot be regarded
as recommendation engines since they will only retrieve exactly what they are asked
to retrieve. Thus, they are a necessary but not sufficient part of the whole solution;
additional features would be needed to move into the realm of practical, large-scale
software reuse. An ideal reuse recommendation engine would automate the whole
process of searching, adapting, and evaluating reuse candidates as well as validating
that they seamlessly integrate into the application under development. Obviously,
in general this process becomes more challenging the larger and more complex the
reuse candidates.

The main obstacle to software reuse is no longer the lack of components to reuse
or the ability to retrieve them efficiently. Many projects have shown that this is
feasible with modern technology [3, 11, 14, 27]. The main obstacle is rather the
balance between the effort required to evaluate and incorporate components into
new applications and the likely benefit (including the risk that a reuse candidate will
turn out to be unsuitable). This is where code recommendation tools can come in
handy. Their role is to nonintrusively and reliably find and recommend high quality
code artifacts leveraging software reuse and to help developers integrate them into
their systems with minimal effort.

There are different forms of recommendation system supporting different ser-
vices and use cases involved in software reuse. Nevertheless, based on the generic
definition of a recommendation system from Robillard et al. [28], we can define a
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reuse-oriented code recommendation system (ROCR1) as any tool that recommends
code artifacts of any kind and size for the sake of supporting reuse tasks. In general,
ROCRs are assistant tools for developers, which are seamlessly integrated into the
developers’ software development process and environment. Based on observations
of the pros and cons of example ROCRs, we can identify a minimum set of
requirements that have to be met by modern code recommendation tools to make
code reuse more convenient. These “best practices” should be standard features of
ROCR systems as they contribute to higher acceptance of such systems among users.

Proactive recommendation systems that unobtrusively suggest code with a high
likelihood of being beneficial in a given situation provide a promising way of
supporting reuse in the implementation phase of software development projects.
The artifacts recommended by such systems need not just be functional production
code but can include all different kinds of executable software used in the lifecycle
of a project such as tests, prototypes, frameworks, libraries, or small code snippets
that can be retrieved, recommended, and reused. Furthermore, a code artifact can be
reused in different ways ranging from direct inclusion in a new software product to
using it as an oracle to drive the software testing process [2, 17].

The remainder of this chapter discusses opportunities, challenges, and techniques
associated with the creation of ROCR systems and describes the basic technologies
needed to build such a system. Many examples of ROCRs have been produced,
including Code Finder [8], CodeBroker [32], Strathcona [11], Prospector [22], Code
Genie [21], Code Conjurer [15], and Code Recommenders [5]. Surveying all such
tools is beyond the scope of this chapter; two archetypal examples (Strathcona and
Code Conjurer) are outlined in Sect. 14.2. Section 14.3 describes the process of
software reuse as well as the basic characteristics and range of different search
services that state-of-the-art code search engines can provide. Section 14.4 takes a
closer look at different forms of code-related reuse that provides the motivation for
variants of code recommendation systems with different foci. It then introduces the
important characteristics of these variants along with implications for their usage.
Building on the provided foundations, Sect. 14.5 focuses on the implementation of
a recommendation system using the open source tool Code Conjurer [14] to provide
concrete examples for the discussed aspects. Finally, a discussion and some thoughts
on the future of reuse recommendation technology—emphasizing open issues and
current developments—are presented in the last two sections.

14.2 Introductory Examples

To provide an intuitive introduction to the subject of this chapter, we present two
ROCR systems by briefly describing their background and characterizing their
features. More detailed information on each of them can be found in the provided

1The acronym ROCR is meant to be pronounced “rocker.”
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public class MyClass {
public CompilationUnit createASTFromSource(String source) {

ASTParser.setSource(source.toCharArray());
}

}

Listing 14.1 Example skeleton used to query Strathcona

literature sources. The first one, Strathcona, is a recommendation system that
suggests examples of actual usage scenarios based on information extracted from
existing software components, while the second, Code Conjurer, is a “classic”
reuse tool that recommends reusable code in a copy-and-paste manner, leveraging a
particular code search engine (Merobase).

14.2.1 Code Recommendation for API Usage with Strathcona

Strathcona is an example recommendation tool [11]. Instead of following the estab-
lished source code reuse approaches that target component reuse, the Strathcona
recommendation system focuses on the lack of documentation accompanying the
wide variety of frameworks and software libraries that are used in modern software
systems. The example recommender assists users by recommending usage and
invocation examples relevant to the developer’s context without imposing new
hurdles for users such as learning a new query language. It achieves this by
extracting all necessary search parameters directly from the developer’s code. An
illustrating example that is familiar to most developers who work within the Eclipse
IDE is the question of how to create an abstract syntax tree (AST) from a piece of
source code. A first quick look at the documentation for the application programming
interface (API) provided by Eclipse suggests that the setSource(...) method
of the ASTParser class would be helpful in achieving this goal, resulting in the
developer trying to write an implementation like that in Listing 14.1.

However, the documentation does not describe the three steps necessary to
complete the task, namely: (1) the parser needs to be created by using a factory
method, (2) the parser needs to be made aware of the source code, and (3) the
AST has to be created. Strathcona’s client (provided as a plugin for Eclipse) will
extract the structure of the developer context to identify the class, its parents,
method calls, and possibly existing field declarations to form a query for its
backend, where different matching heuristics can be applied. The server looks
up possible example recommendations and returns the top ten examples to the
recommender client; Listing 14.2 gives an example (shown in the source view, one
of several presentations provided by Strathcona). The examples serve both to solve
the developer’s immediate problem, and to provide context about additional issues
about which they may be unaware (like the possibility of setting preferences on
generating bindings or on fault tolerance, as in this example).
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public class ASTResolving {
public static CompilationUnit createQuickFixAST(

ICompilationUnit compilationUnit, IProgressMonitor monitor)
{

ASTParser astParser = ASTParser.newParser(ASTProvider.
SHARED_AST_LEVEL);

astParser.setSource(compilationUnit);
astParser.setResolveBindings(true);
astParser.setStatementsRecovery(ASTProvider.

SHARED_AST_STATEMENT_RECOVERY);
astParser.setBindingsRecovery(ASTProvider.

SHARED_BINDING_RECOVERY);
return (CompilationUnit) astParser.createAST(monitor);

}
}

Listing 14.2 Example result (source view without highlighting) delivered by Strathcona

14.2.2 Code Reuse with Code Conjurer

Many developers experience the feeling when implementing a piece of code that
“this must have been already implemented by someone else.” It is certainly possible
to find existing implementations of frequently used components by using a web-
based search engine, but this is typically a haphazard process that disturbs the
natural workflow of developers and requires the explicit cognitive decision to search
for reusable artifacts. In most cases, attempts to use “raw” code search engines
either lead to frustration because nothing reusable can be found or to a decrease
in productivity since searches take too much time. Moreover, developers often
miss possible reuse opportunities because they did not expect reusable artifacts
to be available. To support this “classic” code reuse scenario, the Code Conjurer
recommendation system nonintrusively suggests reusable artifacts by examining
developers’ code and autonomously querying the Merobase code search engine for
results [14]. As an example, imagine a developer writing a simple text editor that
requires the contents of a file to be loaded into a string object and the changes to be
written back to the file. Code Conjurer can help to find a routine that does all of this
based on the method declarations in the source code. For example, solely relying on
the information in Listing 14.3, Code Conjurer will autonomously query Merobase
for reusable artifacts without the user noticing.

Upon receiving the search results, the Code Conjurer client will then present the
developer with results of the kind shown in Listing 14.4.

This code recommendation may be directly reused in the developer’s project via
a simple drag-and-drop action, thus imposing no additional effort on the developer
related to searching and reusing code. In other words, Code Conjurer seamlessly
integrates code reuse into the “natural” workflow of software developers. In addition
to that, Code Conjurer integrates reuse with test-driven development: if developers
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public class TextDocument {
public String loadFile(String filename) {
}

public void saveFile(String filename) {
}

}

Listing 14.3 Example class stub used by Code Conjurer for code recommendation

private String loadFile(String fName) throws Exception {
FileReader fr = new FileReader(fName);
BufferedReader br = new BufferedReader(fr);
StringBuffer sb = new StringBuffer();
String line;

while ((line = br.readLine()) != null) {
sb.ppend(line);

}
br.close();
fr.close();

return sb.toString();
}

Listing 14.4 Example result delivered by Code Conjurer

write JUnit tests before they write the actual code, Code Conjurer is able to find
reusable assets that fulfill the requirements manifested in the test cases and therewith
to recommend semantically matching components.

14.3 Foundations

Before a ROCR can be beneficial and reuse can actually be carried out, it is
necessary to have a critical mass of potentially reusable artifacts. These artifacts
need to be mined for interesting information and an effective search-engine that can
efficiently support searches needs to be built. But why do developers actually want
to find something reusable? The essential motivation for software search and reuse is
clearly captured by a frequently-cited quotation from Krueger [19] who was strongly
opposed to the continuous “reinvention of the wheel” in software development:

Software reuse is the process of creating software systems from existing software rather
than building software systems from scratch. [. . . ] Simply stated, software reuse is using
existing software artifacts during the construction of a new software system.
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This simple vision was built upon the suggestions made even earlier by McIlroy
[23], which are often regarded as the starting point for research in the area of
software reuse. Since software reuse depends on the ability to discover reusable
artifacts, it is necessary to take a closer look at software search engines that form the
“backend” for most ROCR systems. In the past, the development of tools designed to
support reuse has usually been preceded or accompanied by the creation of a search
engine focused on the particular kind of reuse to be supported. This separation
of concerns helped their developers to ensure best quality in both fields: search
engines focusing on optimizing the processing of search queries and client systems
providing a convenient way for users to benefit from this functionality within their
development environments.

Before taking a closer look at the whys and hows of ROCRs, the following
section covers the basic foundations on code reuse itself as well as some basic
knowledge on software search engines, as a prerequisite for the creation of ROCR
systems. In this context, the term software search engine is used in a broader sense
than for just plain source code search since there are different categories/variants
of ROCR systems and not all of them focus purely on code; some also provide
automatically generated code recommendations based on the use of sophisticated
data mining techniques to harvest the knowledge embedded in existing code.

14.3.1 Software Reuse Process

In the literature, there are numerous publications dealing with software reuse, its
foundations, and possible improvements. For example, de Almeida et al. [7] define
a comprehensive framework that cleanly describes the key ingredients for software
reuse in general. Besides the need for a repository and search infrastructure, they
describe a generic software reuse process and various best practices for effective
software reuse. As with classical software development, for effective software reuse
it is necessary to have a specification of what should be built or reused as it forms the
foundation for a query to the search backend that looks for reusable candidates. The
simplest way to do this in a search engine is the “Google approach” of looking
for keywords like “getDistance int” to find a distance calculator, for example.
Nevertheless, such a simple hand-crafted query does not convey much information
beyond the meaning of names and will most probably lead to poor (i.e., rather
imprecise) results [13].

Thus, it is necessary to improve and enrich pure name-matching with additional
information from the context of the environment in which the reused asset should
be integrated. An overview of the improvements in precision that can be achieved
with enhanced query formulation is depicted in Table 14.1, which compares four
textual software search techniques. The table illustrates that all techniques except
the interface-based search deliver a large number of false-positives. Therefore, they
make it hard for developers to identify concretely reusable candidates without the
additional effort of examining many useless ones.
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Table 14.1 Precision of code retrieval techniques [13]

signature matching keyword-based name-based interface-based

average precision 0.9% 16.3% 17.2% 53.7%
standard deviation 1.8% 21.9% 19.3% 22.4%

decision to 
search

description of 
request

searchrecommendation
selection

reuse & 
maintain

Fig. 14.1 Overview of the
microprocess of software
reuse. Ideally a software
reuse action is followed by a
new one

When the search returns a set of candidate results, these are usually not
directly fit for purpose for various reasons such as missing dependencies or API
mismatches. Thus, the process of software reuse involves their examination as well
as possibly their reengineering and adaptation to support seamless integration into
the developers’ software projects. By reusing a previously created piece of code, the
lifecycle of the reused asset is tied to that of the whole project. In other words,
the incorporated code is subject to modifications or refactoring within its new
environment and tests may reveal issue. All these aspects need to be reflected within
a ROCR system that ideally supports the full automation of this process as well as
the responses to developers’ inputs.

A simplified representation of the microprocess of software reuse is depicted
in Fig. 14.1. The process itself is generic and applies to manual as well as tool-
supported software search and reuse. The particular elements of this process are as
follows:

Decision. During a software project, developers decide to actively search for a
reusable asset. Therefore, they need to decide what kind of asset they want to
reuse. The different kinds of search scenarios/assets that users search for will be
described in the subsequent section.

Description. Once a developer has decided to look for reusable assets, a clear
description of what should be reused needs to be created. This specification
ideally should comprise all required information that is necessary to find useful
reusable assets.

Search. The description serves as the query to a search engine. Sophisticated
algorithms should be able to automatically refine and adapt queries in order to
filter out all useless artifacts and ensure that no useful ones are missed. This is
almost impossible without tool support, as it would consume a lot of time to
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create a query, inspect the results, refine and re-issue the query, etc. This cycle
may have to be repeated several times and is obviously not very efficient when
done manually.

Selection. From the “raw” set of search results, the developer needs to choose
whether any of the results are useful and if there are different candidates that
fulfill the given criteria. In that case, the developer has to select the best match
from the list, which can be a very tedious task since it may involve trial uses of
a large number of possible candidates. If this is carried out manually, it involves
to copy of the code from the search engine, look for necessary dependencies,
eventually adapt the provided interface of a reused class and finally try it out.
This must be performed for every candidate in order to find the best matching
one.

Reuse and Maintain. Once a candidate has been selected for reuse and integrated
into the developer’s system, the microprocess of code reuse is completed.
Nevertheless, the reused candidates are now part of the developer’s project
development lifecycle and should be subject to all the same actions and processes
as the other parts of the system like testing and maintenance.

Although the microprocess of reuse is complete, Fig. 14.1 reflects that reuse
should not be a one-off event but should rather be continuously applied throughout
project development [e.g., 19].

14.3.2 Software Search

A recommendation system’s ability to provide reusable code assets to the developer
is mainly based on a repository of previously written code, which has been indexed
and made efficiently searchable. In the past, there have been many commercial
and scientific attempts to provide web-based search engines for code. Examples
include Google Code Search, Koders, Krugle, Sourcerer, and Merobase. However,
none of them ever reported significant numbers of users comparable to mainstream
search engines. In fact, Google even shut down their code search engine in 2012,
clearly illustrating that developers need some other form of support for code reuse.
This is where ROCR systems become an interesting alternative to web-based search
engines as they offer a large range of potential usage scenarios that are very similar
to the archetypal usage scenarios of software search described by Janjic et al. [17].

Detailed understandings of the different use cases for software search have only
emerged recently through studies and online surveys such as those described by
Umarji et al. [30]. A prominent example from this survey is the use of search
engines to provide guidance in the use of libraries—a topic that led to the creation
of a couple of recommendation systems that have received significant research
attention (like, e.g., Strathcona [11]) and their approaches inspired the official
Eclipse Code Recommenders project.

http://www.eclipse.org/recommenders/
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Software Life Cycle Phases

Analysis Design Implem. Test Deploy. Maint.Archetype

Code inspiration
Design prompter
Snippet reuse

Component reuse

Library reuse

Test case reuse

Libr. identification
Progr. understand.

definitive search speculative search

Fig. 14.2 Search scenarios in software engineering [adapted from 17]

Searches motivated by the goal of reusing code without modification are subject
to the following four categories:

• Code snippets, wrappers or parsers
• Reusable data structures, algorithms and graphical user interface (GUI) widgets

to be incorporated into an implementation
• Reusable libraries to be incorporated into an implementation
• A reusable system to be used as a starting point for an implementation

Searches motivated by the goal of finding reference examples are categorized by
the following four categories:

• A block of code to be used as an example
• Examples for how to implement a data structure, an algorithm or a GUI widget
• Examples for how to use a library
• Looking at similar systems for ideas and inspiration

Figure 14.2 visualizes the eight archetypal search scenarios assigned to the
traditional software development life cycle. Searches are grouped into speculative
or definitive searches, represented by dashed or solid lines respectively. While the
former are likely to occur early during the software development process, giving
users an idea about how to solve particular tasks, the latter are more likely to
occur late in the design and implementation phases when a concrete specification
of a required component is typically available. Since our focus is source code
recommendation, the tools presented in this chapter focus on recommending
artifacts originating from the following four archetypal usage-scenarios of software
search:

1. Snippet reuse
2. Component reuse
3. Library reuse
4. Test case reuse
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Having clarified the motivation for software searches and having described con-
crete use cases in which they are typically applied, we deal with the characteristics
of ROCRs in general in the next section.

14.4 Common Characteristics of ROCRs

In this section, we discuss common characteristics of ROCR systems. These criteria
were largely distilled from previous research work capturing the “best practices”
that should be considered for newly built ROCR systems. It is important to
emphasize that the characteristics presented in this section are valid for all the
different categories of ROCR systems that we introduce hereafter.

14.4.1 Use Case Characteristics

The term software reuse is usually associated with the integration of existing
software (i.e., code) into a project under development utilizing a copy-and-paste
approach to reuse [20]. This is also known as code scavenging when contiguous
blocks of source code are copied to the new system [19]. The underlying goal of
these techniques, which are known by different names and are subsumed under the
term pragmatic reuse [10], is to copy as much code as possible from already existing
projects. However, this is not the only kind of reuse that is possible. There are many
other forms of software reuse like design scavenging, where large blocks of code
are reused and subject to major internal changes. This diversity in motivation for
reuse leads to different varieties of ROCR systems. ROCR systems were designed to
support other forms of reuse than just to copy pre-existing code. For example, some
systems recommend automatically created code fragments by leveraging knowledge
from pre-existing source code or other software artifacts.

Component Reuse

The most obvious use case for a ROCR system is to present previously written code
assets to developers. These artifacts may have different levels of granularity ranging
from code snippets, methods, and classes up to whole subsystems and systems.
A well known member of this family is Code Conjurer, which offers developers the
possibility to find reusable code artifacts from the Merobase component finder [18].
When using this Eclipse plugin in its proactive mode, developers are offered
suggestions for reusable methods and classes that fit into their programming context;
they can simply drag-and-drop the best match into their project. By offering the
possibility of automatic dependency resolution, where classes are accompanied by
those classes that they make use of (e.g., by instantiation or method invocation),
Code Conjurer even offers the automated reuse of (smaller) systems, which we call
components in the sense of component-based software development [1].
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Library Reuse

Especially within object-oriented development projects, developers constantly
utilize prefabricated building blocks provided in the form of libraries by invoking
some of their functionality. This is very convenient at first sight, since libraries
form a cohesive piece of software that usually incorporates a lot of reusable objects
with their dependencies. Although they can make the development of new software
much easier, there are, however, numerous obstacles to their usage that every
developer experiences on a regular basis. Questions like “how is this library used,”
“which objects do I need,” “how are they created,” and “what sequence of calls do
I have to make” arise almost every time a new framework, API, or library is used.
Tools like Strathcona [11] or Prospector [22] explicitly address this problem by
recommending code snippets that show examples of how libraries can be used or
which call sequence is necessary to transform an object from one into another type
(e.g., a File into an AbstractSyntaxTree).

Test Case Reuse

Modern code search engines index vast quantities and varieties of reusable code
artifacts. This also includes a large number of test cases along with production
code. For instance, JUnit tests are written as plain Java code and can even be
built into and shipped with a component. This opens up another form of code
recommendation—the recommendation of test code for a newly created system.
Appropriate recommendation techniques for JUnit test code were introduced by
Janjic and Atkinson [16]. They focus on predicting the best possible “next test”
based on a repository of previously written test cases and the knowledge extracted
from them. Such systems do not recommend reusable code per se, but generate
reusable test code by assembling the previously analyzed knowledge bound up in
existing tests and their accompanied production code.

14.4.2 Design Characteristics

Building ROCR systems is a challenging task. Users are sensitive to the usability
of such systems and the quality of the recommendations they provide. If ROCR
systems do not work or behave the way that users expect them to, if they start to
annoy developers with too many suggestions—especially if these are useless or
incorrect—they can quickly get deactivated or uninstalled. To name an example,
a “Clippy-style” intrusive user-interface will most likely cause users to dislike even
the best system (see Murphy-Hill and Murphy [26] in Chap. 9), since it disturbs
them in their primary tasks and forces them to additional cognitive decisions
combined with additional effort (even if this only means to move/click the mouse to
hide an unsuitable recommendation). Therefore, the first important characteristic of
a ROCR system is how these systems should be integrated into users’ development
environments.
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Integration and Usability

An environment for code reuse (sometimes also called software reuse environ-
ment) [7] should ensure full integration of the reuse process into developers’
personal development processes and IDEs. To be successful, the microprocess of
code reuse, which comprises similar tasks to classic software development, has to
be non-intrusively adopted and integrated into the development process of the users’
software projects. For a ROCR system this means that it should be unnoticeable
to the developers unless it has something useful to recommend. And even in the
case that the system can be helpful it must make its recommendation as clearly,
concisely, and unobtrusively as possible. ROCR systems must also make it easy for
developers to reject the recommendation and continue their work with no additional
effort should they decide that the suggested recommendations are not of interest.

In Chap. 9, Murphy-Hill and Murphy [26] present the general characteristics of
recommendation systems’ user interfaces (UIs) in more detail. The characteristics
presented there almost fully apply to ROCR systems as well, so we do not repeat
them here.

Autonomous Background Agent

One of the key problems of web-based code search engines is that the developers
usually have to leave their current working environment (i.e., the active code editor
and project), which obviously interrupts their workflow. Moreover, because queries
have to be defined in a completely different environment (the web-browser) without
access to the immediate context of the user’s work, there is very little space to for-
mulate queries that fully match the developer’s goal. In addition, developers have to
understand how a search engine works to be able to formulate adequate queries that
deliver precise results. And, last but not least, developers have to invest a significant
amount of effort to manually evaluate and integrate reusable assets into their new
applications. In particular, to try out any of the recommendations, users have to
switch between (at least) two windows, and may even lose track in the process.

Reuse-oriented code recommendation systems should therefore operate in a com-
pletely automatic manner in the background, constantly monitoring the developers’
actions. More specifically, an autonomous background agent process is required to
observe all changes made to the system under development and to proactively decide
when to trigger a search for recommendable artifacts. This should happen without
any user involvement. A ROCR system may in fact be much better at timing a search
than the user would be, as it can take into account different factors like network and
system load, the time necessary for the creation of the recommendations, etc. If a
recommendation system needs some time to examine recommendations from a list
of search results for fitness for purpose or has to create the recommendations on
the fly by extracting information from the search, it makes even more sense that
it initiates the recommendation process at the earliest possible moment so that the
recommendations are ready should the user request them.
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The timing and smartness of the background agent in issuing searches and
providing valuable information to the search engine is a key feature of the rec-
ommendation system. This proactive behavior therefore needs to be well designed
since it plays a major role in determining how a ROCR system is perceived by its
users.

Context Awareness

In order to be able to efficiently find potential recommendations, a ROCR system
needs to access as much information about the development context as possible.
Depending on the kind of recommendation system, context awareness may range
from the immediate environment of the cursor to the source code of the whole
project. As the ability to analyze context data is an important driver to the
proactive behavior of a recommendation system, it should be directly embedded
into a developer’s working environment with full project access. This enables the
aforementioned background agent to autonomously decide, when to issue searches
and to deliver recommendations to the system’s user.

Traditional code search engines usually offer users a small text field where they
can write a short query describing the desired reusable assets. This query can either
be in the form of a sequence of keywords or a sophisticated query language to
provide a full description of the interface the requested assets should provide. While
the former case is quite easy to use, the latter involves additional effort in the
formulation of the query. As the evaluations in Table 14.1 show, keyword-based
searches tend to be rather imprecise, while the interface-based ones seem to provide
more precise search results. Further manual refinements of a query may make the
whole searching process more time-consuming and inefficient. This can frustrate the
user who, dissatisfied by this experience, might be tempted to revert to “reinventing
the wheel” again.

To address this problem, context aware ROCR systems should remove the
responsibility for query formulation from developers, instead performing such tasks
on their behalf. In conjunction with a background agent, context awareness allows
the system to perform search tasks hidden from the users’ view. Depending on
the kind of code recommendation system, context awareness may have different
foci. One application is when a recommendation system aims at simplifying API
usage of a framework or library. In this case the recommendation system is usually
more interested on the immediate context of the cursor than on other classes in the
developers’ project. More specifically, it uses the last few lines created to issue a
search based on such information as the type of a newly instantiated object (i.e.,
source type), method invocations associated with that object and the allocation of a
method’s return value to another new object (target type). Another example of the
usage of context awareness can be found in Sect. 14.5 where Code Conjurer [14] is
used to illustrate how code recommendation systems can be implemented.
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Since the possibilities for investigating the context of the code under development
are uncountable and mining it for relevant information during query formulation is
a time consuming task, this process has to be carried out automatically if it is to be
efficient. In Chap. 3, Menzies [24] provides further insights into the topic of data-
mining.

Evaluation and Ranking

To be useful for developers, recommendation systems in general and ROCR systems
in particular should not present the raw data acquired from the search backend,
but should provide a meaningful ranked overview of the recommendations. The
consequences of providing the user with incorrect or unordered recommendations
are similar to those mentioned in the section on user-interface characteristics.
Furthermore, following the ideas of Brun et al. [6], the users of a recommendation
system should not be required to inspect large numbers of options before they
(hopefully) find a useful asset. Therefore the IDE should autonomously perform an
evaluation of the consequences of the application of the assets within the developers’
context. This approach is called speculative analysis and it enables ROCR systems
to investigate and predict the consequences of the inclusion of any of the suggested
options in the developer’s project.

Implementing this approach, however, only does half the work since the infor-
mation obtained through speculative analysis is just a basis for ranking the
recommendations. The detailed ranking criteria strongly depend on the focus of the
ROCR system and need to be optimized on a domain-by-domain basis. If the reuse
system is used in conjunction with a private reuse repository, it is also possible to
filter out the classes and types that are in the so-called reuse-by-memory space of a
developer and thus need not be recommended by the system [31]. This is done by
CodeBroker, for instance, where the system removes recommendations well-known
to the developer to save time.

Ready on Demand

The introduction to this chapter already mentioned the dilemma of make-or-reuse
from which code search and reuse considerably suffered in the past. Yet, it is still a
challenge to convince developers that this approach can make them more efficient
during system development since issuing a query to a search engine typically comes
at the price of interrupting their cognitive work on a program. In contrast, ROCR
systems do not create this problem since they are integrated into the developers’ IDE
and have to be ready on demand in order to be successful. Imagine a reuse-oriented
recommendation system that is tightly integrated into the code editor and which
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forces the developer to stop typing while it is performing a time consuming task.
This would result in immediate deactivation of the system and adoption of the make
option described above.

To avoid such situations, ROCR systems have to be ready on demand and must
not cause any delays on the developer’s work. If they cannot deliver any appropriate
recommendations in a particular situation, they need to stay silent and invisible.

Traceability

Recommendation systems in general and code recommendation systems in partic-
ular need to be easy to understand and self-explanatory when they are used. The
aforementioned requirement of integrating the system into the developer’s IDE
is a key consequence of this. Thereby a tight integration means as well, that the
usage, the “look-and-feel” and the behavior of the recommendation system has to
be similar to what developers are used to from their IDE. No new design or usage
metaphors should be imposed, as they may impose an extra hurdle to the usage of
the system.

Beyond plain UI design criteria, however, it is also important that the recom-
mendations themselves are understandable and reasonable from the developers’
point of view. Recommendation systems should present their information in a clean
and transparent manner so the users can clearly comprehend their value. This also
involves the aforementioned ranking, where users should easily understand why an
option outranks others and in the ideal case should also be able to adapt the ranking
criteria to their needs. When a recommendation is finally integrated into the system
under development, the system should highlight that fact and should not perform
any action that cannot easily be undone and observed by users in case that the
reused component needs to be removed from the system at a future point in time
for unforeseen reasons.

Summary

To sum up the characteristics discussed in this section, imagine a ROCR system
as an adviser that provides a developer with an easy to use interface for the most
sophisticated search engines and mining tools available. It must silently monitor
the developers’ activities and present recommendations only when there is a high
likelihood that they will actually be useful and fit into the current system in an
effective way. “Less is more” is probably also an important motto for a ROCR
system, since too much visible activity can easily annoy users and cause them to
switch off all or part of the functionality. The subsequent section discusses how to
tackle this none trivial challenge from an implementation point of view.
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14.5 Implementing ROCRs

After having laid out the basic foundations and having discussed the generic
characteristics of ROCR systems, this section focuses on how such systems can be
implemented for, and incorporated, into modern IDEs. More specifically, it provides
an overview of the architectural organization of a recommender-enhanced IDE and
briefly touches on the question of which technologies can be helpful to build ROCR
systems.

14.5.1 Architecture of ROCR Systems

A ROCR system is supposed to automate the micro-process of code reuse. There-
fore, it is not composed of a single building block, but synthesizes various modules
that need to fit together in order to create a ROCR system as illustrated in Fig. 14.3.
Let us take a closer look at the individual parts of such an architecture and describe
them in more detail by reviewing the process steps outlined previously in Fig. 14.1:

decision ! description ! search ! selection ! reuse and maintain

While the introduction outlined this process in general terms, the following
reflects it in the specific context of ROCR systems.

Decision. A ROCR system is integrated into the IDE of the developer and
includes an autonomous background agent. The system constantly monitors
developer actions within the IDE and autonomously decides when it should
trigger the process of searching for a recommendation.

Description. Considering the full context of the developers’ projects, the ROCR
system collects all relevant information that is necessary to create a description
of the current task for which it aims to create a reuse recommendation. The result
is the formulation of a query that can be sent to the underlying search engine.

Search. Utilizing the information gathered from the project, the search infrastruc-
ture performs a search for reusable assets. ROCR systems take into account that
the results at that stage can only be regarded as raw material (i.e., candidates)
for further examination in the subsequent selection process and are by no means
ready to use.

Selection. The selection part of the considered microprocess can also involve a
conversion step in the context of ROCR systems. Since these are, as discussed
before, not solely focused on copy-and-paste reuse of code, in this step they
may also generate code recommendations from information contained in the
search results. At this stage, the ROCR system automatically evaluates the set
of candidates to provide a ranked selection of recommendations. Based on the
information gained from this, the system should rank the recommendations and
reject those that are presumably not useful to the developer. This ensures that the
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Fig. 14.3 Architectural overview on a ROCR system

users of the system get a precise list of recommendations from which they can
choose the most beneficial for their purposes.

Reuse. When a recommendation is selected it becomes part of the developer’s
system. The recommended asset is integrated into the development lifecycle
of the project and becomes subject to the same quality assurance criteria and
maintenance tasks as the rest of the system under development.

This generic architecture is naturally only an outline of the specific architec-
ture for any single ROCR system implementation tailored to a specific usage
scenario. Possible refinement options may address the inclusion of user feedback
on recommendations, the association of the recommendations with artifacts from
the development context (e.g., for caching purposes), social aspects like reporting
of users’ recommendations of reused assets to other users [e.g., 4] and reporting
changes to reused assets back to the original source, etc. Some of these aspects are
addressed in the discussion in Sect. 14.6.
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14.5.2 Implementation Outline

As with any software system, the implementation of a ROCR system must be driven
by the specification of functionality the system should deliver. In our case, this
is the recommendation of any form of source code that is automatically derived
from previous implementations. The Eclipse plug-in Code Conjurer [14] therefore
serves as a reference system, which supports the reuse of Java code based on
interface-based or test-driven searches. The system utilizes the Merobase code
search engine2 and recommends reusable code assets that fit into the context of
the class under development. Developers may choose to integrate only portions of
the recommendations into their project (by dragging a method into a class) or to
reuse a class with all its dependencies and, if necessary, appropriate adapters.

Background Agent for Search Initiation

The decision when to search for recommendable assets is the responsibility of
the autonomous background agent that “intelligently” triggers the recommendation
process. In this context, “intelligent” means that it should perform its task in a
smart way in that sense that not every event, such as a keystroke, should initiate
a search and drain the resources of the development system or the network and
search infrastructure.

As Code Conjurer is a Java-based, code-centric tool, its background agent
is merely activated when a developer is working in a Java Editor and remains
inactive otherwise. If a developer changes any structural property of the class under
development, such as any of its interface defining parts, the system switches to a
state where it waits for further user action within a given timeframe. If no further
user interaction is observed, the system initiates a search in due consideration of the
development context. Therefore, Code Conjurer examines the development context
looking for tests that accompany the class under development and if it finds any, it
accordingly creates a query and issues a search to the search infrastructure.

Thus, the “smartness” of a background agent for ROCR systems has several
facets. It must be able to construct a query that goes beyond the information a user
would provide to a code search engine, issues queries autonomously (which helps to
prevent delays induced by the search infrastructure), and it considers the limitation
of resources by incorporating a grace timer for user interaction. This is introduced
to prevent the system from initiating too many search requests one after another that
would either be carried out in parallel with minimal differences in content or would
have to be frequently canceled, both resulting in a waste of resources.

2The Merobase repository of reusable assets contains approximately 2.5 million Java source files
with around 22 million methods [18].
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Search Infrastructure

There is an obvious synergy between search engines and recommendation systems.
As previously mentioned, on the one hand practically all ROCR systems have user
interfaces, which are integrated into an IDE, but need to rely on some kind of search
engine (or database) as their source of information. Code search engines on the
other hand are good in delivering a large amount of information, but often require
relatively complex queries that need to be manually prepared by users. Hence,
simply by providing a semi-automatic and context aware way of invoking search
engines, recommendation systems already improve the reuse process.

To a certain extent, the creation of search engines nowadays is a straight-
forward task and there are many tutorials available that describe this process in
detail. Besides the use of relational databases (which, e.g., also underpinned the
Sourcerer [21] code search engine), document-driven full-text databases such as
Lucene or MongoDB have recently gained a lot of popularity in projects like Code
Recommenders [5], Merobase [18], and Sentre [16]. Since it is very important for a
recommendation system to be responsive and provide recommendations to users on
an ad hoc on-demand basis, it is important that the underlying search infrastructure
supports this goal.

The search infrastructure can be distributed in many different ways. If the
recommendations are created from a small and static pool of data, it is possible
to ship the search infrastructure with the recommendation system itself. This is,
however, the least common case, since the code base from which the search indices
are created usually changes rapidly (after all, it primarily consists of source code)
and search infrastructure should aim to incorporate short update cycles. Therefore, it
is helpful to separate the search infrastructure from the ROCR system and to locate
it on a centrally maintained and operated server that provides enough resources to
store the data and execute the updates as well as the searches. Additionally, another
positive effect of this separation is the ability to store user feedback from the reuse
process to improve the user experience of all clients.

In our exemplary implementation, Code Conjurer queries the Merobase search
engine via a web service in order to receive potentially reusable code assets.
Merobase itself is a web application implemented using J2EE utilizing Lucene and
runs on a JBoss application server. The queries arriving at the server are translated
(parsed) into the Lucene query language in order to use Lucene to drive the code
search process [12]. The results of a search (which usually takes less than a second)
are immediately returned to Code Conjurer for further analysis.

Selection and Ranking of Recommendations

When receiving the search results, a recommendation system should evaluate and
process them before they are presented to the user. This helps to elevate the users’
perception of the ROCR system and makes its application more effective and
efficient. The context awareness of ROCR systems is one of the key features that

http://www.mongodb.org/
http://lucene.pache.org/
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make them superior to traditional search engines by enabling them, for instance, to
autonomously issue queries or to evaluate the effects of accepting a recommendation
before it is actually selected. In the literature, the latter is referred to as speculative
analysis [6].

Code Conjurer supports speculative analysis, when it comes to the recommenda-
tion of JUnit test cases, that is, test code [16]. In general, there are two main ways
in which this feature can be implemented for classic code recommendation:

Distance Measure. A naive measure that can be used to rank the results is
a distance metric between an issued query and the results delivered by the
search backend. It subsumes a comparison of the interface-description provided
by the class under development with the interface-description of the elements
in the result list. The smaller the deviation of a reuse candidate’s interface from
the developer’s class’ interface, the higher the ranking of the particular candidate
in the list of recommendations. As an example, consider a generic class that
comprises a set of methods with input parameters. If the interface-description of
this class perfectly matches the interface-description of a candidate the distance
between them is zero and thus the candidate will be ranked highly. However, if
only the class names of the query and the candidate match, it is assigned a low
ranking.

Test-Driven Reuse. The main difference between code and other (textual) doc-
uments is that code is executable. As described in the characterization of
the background agent Code Conjurer therefore uses its context awareness and
examines the project’s workspace in order to look for test cases that have
been written for the class under development. If the system is able to identify
accompanying tests, they are executed against the reuse candidates and used
as a means of evaluating the candidate’s fitness for purpose. Thereby a set of
running candidates is obtained and the system can distinguish between those that
provide an interface that matches the one defined in the test and those that need an
adapter for their interface in order to execute tests. In both approaches, additional
metrics like LOC, cyclomatic complexity and execution times can also be used
to influence the final ranking.

Convenient Integration of Recommendations

In Chap. 9, Murphy-Hill and Murphy [26] discuss the importance of an effective
user-interface design and of making recommendation systems as easy to use and
access as possible. This applies in particular to ROCR systems, since developers
can quickly get frustrated by popup-windows or other UI effects that disturb their
creative work and distract them from their main task—the creation of software.
Thus, the recommendations should seamlessly integrate into the IDE and be intuitive
to use as well as to not use. As mentioned before, an example of how this can be
achieved is shown in Fig. 14.4, where the recommendation system is integrated into
the auto-completion feature of the IDE.
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HelloTest.java UML.diagHello.java
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public class Hello {

   /*
    * Hello Recommendations Example
    *
    */

   public void sayHello() {

}

Complete stub
Insert method
Complete class
System.out.println
Insert JFrame

String hello = "Hello" +
               "World!";

System.out.println(hello);

Fig. 14.4 Recommendations integrated in the IDE’s auto-completion

In this case, the system does not distract the developer with unwanted popup
windows and there is no need to activate any special views. Moreover the recom-
mendations themselves can be examined using the arrow keys, and if users want
to use the recommendation they can simply integrate it by pressing the enter key.
Similarly, discarding the recommendations only involves the pressing of the escape
key. This is a very convenient way for developers to interact with the system that
takes into account the fact that during the creation of code users usually have their
fingers on the keyboard and are not in contact with other input devices.

Code Conjurer also provides a convenient way of integrating reuse candidates
in the system under development. If a reusable asset calls some functionality of
another class or object, the system tries to automatically resolve this dependency
and offers the developer the option of integrating that artifact into the system as well.
In addition to that, it automatically adapts search results to the developer’s context:
if a reuse candidate in test-driven search provides a different interface to the one
required by the test, an adapter generator tries to produce the necessary glue code to
allow the candidate to be invoked. If this is successful, Code Conjurer supports the
automatic integration of the component and the adapter into the developer’s Eclipse
workspace.

14.6 Discussion

The principles, practices, and examples presented in this chapter provide a basic
overview of ROCR systems and their creation. Many of the characteristics described
are more or less “best practices” distilled through a constant process of improvement
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and learning about how these systems can be improved and enriched. This short
section is intended to take a look at the implications arising from the usage of ROCR
systems and point to possible improvements in future systems.

14.6.1 Responsibility

Software development is a labor-intensive task, involving creativity and endurance.
It is thus unfortunate that developers continue to invest a huge amount of effort in
re-creating similar code over and over again. Software reuse, however, promises to
ease this burden on developers and to provide more room for the creation of truly
new components. This is, nevertheless, only one side of the coin, since the reuse of
code imposes a great deal of responsibility on developers.

Although modern systems are able to perform initial checks on the reused code
like filtering malicious code (as it is performed, for instance, with the server-side
execution in Code Conjurer) or evaluating the system’s state by applying speculative
analysis, developers have to ensure that the recommended and reused code does
not introduce any (possibly malicious) unwanted behavior into the system under
development. Furthermore, they need to inspect the code for any potentially harmful
modules and ensure that the quality of the code at least matches that of a “self-made”
system.

As explained before, when integrated into the system, the recommended code
assets have to adhere to the same process and quality standards as the code
written by the project developers themselves. The developers must understand what
the reused code does, which beside code-inspection involves reading additional
comments and documentation about the component at hand and, as a side effect,
identifying possibly superfluous statements, that is, dead code.

An example of how this can be implemented is provided by Code Conjurer,
which supports the identification of superfluous parts of code in reuse candidates.
During a test-driven search the system inspects the reuse candidates and examines
whether dead-code can be removed before compilation. If the reused component
executes in the context of the developer’s test case, the system allows only the
necessary parts of the reuse candidate to be integrated. In addition, it provides
dependency resolution when necessary and cleans up imports and declarations after
the code has been inserted into the new system.

Although parts of the code inspection and cleanup actions have been considered
and partially implemented in contemporary tools, in general the question of quality
assurance in ROCR systems has been somewhat neglected in the past.

14.6.2 Feedback

In the same way that context awareness is critical to the processes of query
formulation and result evaluation, the collection of user created feedback is critical
to the quality and improvement of future recommendations provided by ROCR
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systems. This not only involves processing intentional feedback from users like the
manual rating of a recommended asset. It also means collecting indirect feedback
derived from the users’ behavior and interaction with the system under development.

As an example, one aspect of (intentional) user feedback includes ideas from
social media and networks. Users may want to tell other developers within their
project that a particular piece of code they reused does a great job and that
they recommend its reuse. Additionally, this may help to motivate other users in
their decision to exploit reuse in their projects. Developers of ROCR systems are
therefore encouraged to enable users to share their experience with the system and
the code assets it recommends.

Information acquired from automatically collected feedback can help to adjust
the process of evaluating and ranking the retrieved results of the search, which
usually relies on algorithms that grade the results with the help of a set of weighted
criteria. Ideally, when the system offers a list of ranked recommendations to its
users, the first item on the list should be the most suitable. It may, however,
happen that users pick some other candidate from the list in accordance with their
own evaluation criteria. Although this is not likely to be an issue for a small list
of recommendations, the users’ confidence in the recommendation system would
be higher if it learned from their decisions and improved its recommendations
accordingly. To achieve this, the system may for instance analyze how the different
internal ranking criteria can be re-adjusted to put a user’s choice first in the list and
store this information in a data model for learning algorithms.

In addition, it is important to keep in mind that the process of code reuse
also involves the maintenance of the integrated assets. This means, that users will
invariably create new versions of the code recommended by the ROCR system
by fixing bugs, improving efficiency, . . . These changes can be monitored and
processed in order to archive the new version of the code and provide it to other
users who reused an older version. In this way the overall quality of the code in
software projects applying reuse should rise, since the more often a piece of code is
reused the more it will be refined and cleaned of bugs.

14.6.3 Privacy

The overall application of ROCR systems, as well as the specific issue of user
feedback, cannot be considered without a look at privacy issues. The following list
of issues provides an impression of some problems that may arise.

Query Formulation. Whenever a ROCR system relies on a server-side search
infrastructure, the queries extracted from the developer’s code are sent to the
network and thus potentially exposed to others. Users need to be aware of this and
ROCR systems should incorporate mechanisms to establish a trust relationship
with developers. The wide range of possibilities includes the anonymization of
user-related information (i.e., removal of user-id, client IP, etc.) in the server logs,
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as well as the usage of secure connections. In addition, the query may contain
sensitive data (like the inner design structure of a developer’s system) that should
not be stored or exposed to others.

Test-Driven Reuse. With the availability of test-driven reuse, a balance has to be
found between the aforementioned privacy rights of the users of a system and the
protection against attacks. Since test-driven reuse involves the execution of the
user’s code (on the server infrastructure in the case of Code Conjurer), it must be
possible to track the sources of possibly malicious code and intentional attacks.

Versioning. Automating the tracking of versions may not be as easy as it seems
at first sight. Reused artifacts may become deeply integrated into a developer’s
system and thus be tightly connected to the intellectual property of the developer
and/or owning company. Since not all open-source licenses have a strong
copyleft, users might not want to share their valuable code and thus it may be
hard if not impossible to track changes just to the reused code without revealing
more code from the project.

14.7 Conclusion

Software engineering has benefited greatly from the open source movement,
especially the nascent genre of ROCR systems. Without open source it would have
been much harder if not impossible to build the ROCR systems described in this
chapter since a key prerequisite for them is a large set of source code that can be
used as a basis for recommendations. As discussed, the ROCR systems that have
been built to date index all kinds of software artifacts ranging from small code
snippets, API usage, coarse-grained components and even test cases.

All tools presented in this chapter generally need to support the simplified
software reuse process presented in Sect. 14.3.1 that requires developers to carry
out five steps: First they need to consciously decide to reuse an artifact. Once this
decision has been made they need to describe what they are looking for so that the
search tool is able to find candidates for reuse. In most cases, a search will deliver
a number of candidate results so that the next step is to select and tailor the most
useful artifact. Once it has been integrated into the project, it needs to be maintained
and updated like all other artifacts in the developer’s code base.

In principle, a full-fledged ROCR system should be able to support all these steps
automatically so that the developer is not burdened with them. This means that the
system needs to monitor the developer’s activities and must be able to independently
decide when it is worthwhile to execute a search query. Obviously, it needs to be able
to generate an appropriative query for the underlying search engine and rank the
results according to their usefulness for a given context. Ideally, the developer then
simply needs to choose the most appropriate result and the corresponding artifact
is then integrated into the project automatically by the ROCR system. In a perfect
world, the ROCR system would keep track of changes to the reused artifact from
then on and would at least notify the developer when they occur.
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A ROCR system basically consists of two main parts, namely a search engine or
repository hosting the code base used to search for recommendations (the back-
end if you will) and the actual recommendation engine (the front-end) that is
responsible for the user and IDE interaction. If stable, generic, and mature software
search engines were available it would be possible to drive several recommender
systems from one search engine. However, all ROCR systems created in the last 15
years have been built in the context of academic theses and incorporated their own
specialized search engine. As a result, many of them are no longer operational due
to the rapid change in the landscape of code search and reuse technologies. Hence,
building novel and more sustainable ROCR systems that finally accomplish the
transition to a production-ready tool is still a challenge for an upcoming generation
of students or industrial developers. We hope this chapter will provide them with
the historical context and background knowledge needed to create them.
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Chapter 15
Recommending Refactoring Operations
in Large Software Systems

Gabriele Bavota, Andrea De Lucia, Andrian Marcus, and Rocco Oliveto

Abstract During its lifecycle, the internal structure of a software system undergoes
continuous modifications. These changes push away the source code from its
original design, often reducing its quality. In such cases, refactoring techniques
can be applied to improve the readability and reducing the complexity of source
code, to improve the architecture and provide for better software extensibility.
Despite its advantages, performing refactoring in large and nontrivial software
systems might be very challenging. Thus, a lot of effort has been devoted to the
definition of automatic or semi-automatic approaches to support developer during
software refactoring. Many of the proposed techniques are for recommending
refactoring operations. In this chapter, we present guidelines on how to build such
recommendation systems and how to evaluate them. We also highlight some of the
challenges that exist in the field, pointing toward future research directions.
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15.1 Introduction

During software evolution, change is the rule rather than the exception [27].
Continuous modifications in the environment and requirements drive software
evolution. Unfortunately, programmers do not always have the necessary time to
make sure that the changes conform to good design practices. In consequence,
software quality often decreases, resulting in more difficulties in maintaining
existing software [45]. Several empirical studies have provided evidence that low
design quality is generally associated with lower productivity, more rework, and
more effort for developers [7,17,21]. Refactoring is one solution aimed at restoring
or improving the quality of the software.

Refactoring has been defined as the process of changing a software system in such
a way that it does not alter the external behavior of the code yet improves its internal
structure [27]. Different refactoring operations might improve different quality
aspects of a system and help in removing code bad smells [27] (i.e., symptoms
of possible design problems in source code) as well as antipatterns [19] (i.e., design
flaws in source code).1 As an example, in object-oriented systems Blob classes
(i.e., large classes implementing unrelated responsibilities) can be decomposed by
splitting their methods into different classes that group together strongly related
responsibilities and are easier to comprehend and maintain (this operation is
known as the Extract Class refactoring). Typical advantages of refactoring include
improved readability and reduced complexity of source code, a more expressive
internal architecture and better software extensibility [27]. Refactoring is advocated
as a good programming practice to be continuously performed during software
development and maintenance [15, 27, 32, 43]. In fact, as explained by Kerievsky
[32]:

By continuously improving the design of code, we make it easier and easier to work with.
This is in sharp contrast to what typically happens: little refactoring and a great deal of
attention paid to expediently adding new features. If you get into the hygienic habit of
refactoring continuously, you’ll find that it is easier to extend and maintain code.

Despite its advantages, performing some refactoring operations in large and
non-trivial software systems can be very challenging. First, identifying refactoring
opportunities in large systems is very difficult, as the design flaws are not always
obvious [27]. Second, when a design problem has been identified, it is not always
easy to apply the correct refactoring operation to solve it. As an example, splitting
a noncohesive class into different classes with strongly related responsibilities (i.e.,
Extract Class refactoring) requires the analysis of all the methods of the original
class to identify groups of methods implementing similar responsibilities, which
should be grouped together in the new classes to be extracted. This task becomes

1The main difference between code smells and anti-patterns is that a code smell represents
something “probably wrong” in the code, while an anti-pattern is certainly a design problem in
source code. In other words, a code smell might indicate an antipattern. As example, a Large Class
(bad smell) is one of the symptoms of a Blob Class (antipattern).
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harder when the size of the class to split increases and its cohesion decreases.
In the end, once the refactoring solution has been defined, the software engineer
must apply it without changing the external behavior of the system. All these
observations highlight the need for refactoring recommendation systems supporting
the software engineer in (1) identifying refactoring opportunities (i.e., design flaws)
and (2) designing and applying a refactoring solution.

Regarding the identification of refactoring opportunities, several approaches
specialized in the identification of design flaws in source code (e.g., antipattern)
have been proposed in the literature. Some of these approaches are manual [65],
others apply rules based on software product metrics [33, 42, 48] or other source of
information (e.g., design change-propagation [58]). These approaches are out of the
scope of this chapter, since they are focused on identifying a code design problem,
ignoring how to solve it through an appropriate refactoring operation. The interested
reader can find a complete treatment of more recent work in this field in the paper
by Moha et al. [48].

On the other hand, approaches recommending how to refactor a design flaw
are the focus of this chapter.2 By analyzing these approaches we will derive a set
of guidelines for building and evaluating recommendation systems for supporting
software refactoring. In addition, we will also discuss some problems that are still
open, which will allow us to start tracing future research directions in the field.

15.2 Recommendation Systems for Software Refactoring

There are more than 90 different refactoring operations defined in Fowler’s catalog.
Most of the refactoring operations are simple source code transformations aimed
at increasing source code comprehension. For example, the Remove Parameter
refactoring removes a parameter not used anymore by the method. Most research
efforts have been focused on providing support to developers when performing
more complex refactoring operations, e.g., Extract Class [27]. In the following,
we discuss the recommendation systems existing in literature classifying them on
the basis of the supported refactoring operation(s). Specifically, for each approach
we report: (1) the support it provides to perform the refactoring operation(s),
(2) the information it exploits from source code, (3) the algorithm used, and
(4) the evaluation conducted for it. Table 15.1 summarizes the refactoring operations
discussed in this chapter, by classifying them based on the benefits provided to the
source code.

2Note that some of these approaches are also able to identify the design flaw besides suggesting
how to solve it.

http://refactoring.com/catalog/
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Table 15.1 Refactoring operations discussed in this chapter

Name Description References

Improving code decomposition

Extract class Splits a complex and low cohesive class
into new classes having a better
(focused) defined set of
responsibilities.

[9, 12, 25, 63]

Extract package Splits a package grouping heterogeneous
responsibilities into different cohesive
packages grouping together classes
implementing similar responsibilities.

[10]

Extract method Splits a method composed by several code
fragments performing different
actions, into new methods, each one
implementing a specific and isolable
action.

[1, 67]

Improving names and location of code

Rename method (field) Applied when the name of a method
(field) does not reveal its purpose,
compromising the code
comprehension.

[4]

Move method Moves a method m from its original class
to an “envied class”, containing
responsibilities closer to those
implemented by m.

[5, 52, 62, 66]

Move class Moves a class C from its package to a
new package grouping together
responsibilities closer to those
implemented by C .

[3, 14]

Improving conformance with Object-Oriented programming principles

Push down field In a class hierarchy, moves a field only
used by some subclasses from the
superclass to the subclasses using it.

[51]

Pull up field In a class hierarchy, moves a field
implemented in all subclasses to their
superclass.

[51]

Push down method In a class hierarchy, moves a method only
used by some subclasses from the
superclass to the subclasses using it.

[51]

Pull up method In a class hierarchy, moves a method
implemented in all subclasses to their
superclass.

[51]

Extract hierarchy When a class is implementing several
different behaviors in conditional
statements, extract from it a hierarchy
of classes, each one representing a
special case.

[51]

Collapse hierarchy Merges together a superclass and the
subclass that are very similar.

[51]
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15.2.1 Improving Code Decomposition

In this section, we present recommendation systems supporting refactoring opera-
tions aimed at improving code decomposition.

Extract Class Refactoring

Extract Class refactoring is used to remove the Blob antipattern [19] from a software
system. A Blob is a large and complex class that centralizes the behavior of a portion
of a system and only uses other classes as data holders, that is, data classes. Blobs
are generally characterized by low cohesion since they implement several different
responsibilities. In addition, due to the numerous dependencies with the data classes,
Blobs also exhibit high levels of coupling.

Extract Class refactoring is applied to split the responsibilities implemented in
a Blob class into different classes with higher cohesion (i.e., grouping together
strongly related responsibilities). Blob classes have negative impact on com-
prehension and maintenance activities, well documented by existing empirical
studies [7, 17, 21, 29, 41]. Hence, removing Blobs is a very important design
improvement activity. Given the complex nature of Blob classes, performing Extract
Class refactoring is a difficult task, as the following steps must be performed:

1. Analyzing the methods of the Blob class (which are often in the hundreds) to
understand the main responsibility for each of them

2. Identifying clusters of methods that implement similar and related responsibili-
ties

3. Distributing the attributes of the Blob class among the identified clusters of
methods

4. Splitting the Blob class into new classes, which contain the clusters of methods
and attributes

5. Ensuring that no changes in the system behavior result from this refactoring

Manual Extract Class refactoring is a difficult and error-prone task, hence
research has been devoted to define approaches able to support the developers
in performing it.

The Extract class refactoring can be formulated as a cluster analysis problem,
where it is necessary to identify the optimal partitioning on methods in different
classes. As proposed by Fokaefs et al. [26], structural dependencies between the
entities of a class to be refactored (i.e., attributes and methods) can be exploited to
guide the clustering process. Specifically, using this information, Fokaefs et al. [26]
compute its entity set for each attribute (i.e., the set of methods using it). For each
method they also compute the entity set (i.e., all the methods that are invoked by a
method and all the attributes that are accessed by it). The Jaccard distance between
all couples of entity sets of the class is computed in order to cluster together cohesive
groups of entities that can be extracted as separate classes. The Jaccard distance is
computed as follows:
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Jaccard.Ei ; Ej / D 1 � jEi \ Ej j
jEi [ Ej j

whereEi andEj are two entity sets, the numerator is the number of common entities
between the two sets, and the denominator is the total number of unique entities in
the two sets.

The approach proposed by Fokaefs et al. [26] has been implemented as an Eclipse
plug-in, called JDeodorant. The benefits of JDeodorant have been empirically ana-
lyzed. The empirical evaluation indicated that the refactoring operations provided
by JDeodorant are meaningful and they approximate the refactoring operations
previously performed by three developers with 67 % precision and 82 % recall.

An alternative approach for the identification of Extract class refactoring oper-
ations is based on graph theory, and in particular on the concept of a transitive
closure [9]. The approach takes as input a class previously identified as a candidate
for refactoring. The class is refactored following the process depicted in Fig. 15.1.
In the top path of the process the candidate class is parsed to build a method-
by-method matrix, an n � n matrix where n is the number of methods in the
class to be refactored. A generic entry ci;j of the method-by-method matrix
represents the likelihood that method mi and method mj should be in the same
class. This likelihood is computed as a hybrid coupling measure between methods
(which reflects the degree to which they are related) obtained by combining three
structural and semantic measures, that is, the structural similarity between methods
(SSM) [28], the call-based dependence between methods (CDM) [12], and the
conceptual similarity between methods (CSM) [55]. In the SSM measure, the
higher the number of instance variables shared by two methods, the higher their
likelihood to be in the same class. CDM takes into account the calls performed

http://jdeodorant.com/
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by the methods, that is, the higher the calls interaction between two methods the
higher their coupling. Finally, CSM measures the coupling between methods as
their textual similarity. The conjecture is that if developers used similar terms in
comments and identifiers of two methods, it is likely that they are “describing”
similar responsibilities implemented by the two methods. These three measures are
combined through a weighted sum in order to obtain the hybrid coupling measure
mentioned before. It is worth noting that the method-by-method matrix is just a
convenient way of storing a weighted graph representing the Blob class, where
each node in the graph represents one of its methods and the weight of the edge
connecting two nodes (i.e., methods) represents their coupling.

Using the information in the method-by-method matrix, the second part (bottom
path) of the refactoring process shown in Fig. 15.1 extracts the new classes from
the input Blob. In particular, a filtering step is used to remove spurious links and to
split the initial graph represented in the method-by-method matrix into disconnected
subgraphs. This is done by removing all edges in the graph having a weight lower
than a defined threshold named minCoupling. Then, the approach identifies the
chains of connected methods belonging to the different subgraphs. Each computed
chain represents a class to be extracted from the original class. However, some of
these chains could have a very short length (trivial chains). To avoid the extraction
of classes with a very low number of methods, each trivial chain is merged with the
most coupled non trivial chain to obtain the final set of classes to be extracted from
the original class. The attributes of the original class are also distributed among
the extracted classes according to how they are used by the methods in the new
classes, that is, each attribute is assigned to the new class having the higher number
of methods using it.

The approach has been implemented as an Eclipse plug-in, called ARIES [9,11].
To better understand how ARIES works, let us assume that we are interested in
refactoring the UserManagement class shown in Fig. 15.2. Given its name and its
set of methods, probably the original responsibility of this class was to implement a
set of operations that allow to manipulate the User entity in the database. However,
during software maintenance, two new responsibilities were added to this class, that
is, the management of the Teaching entity and the management of the Role entity.
Figure 15.3 shows: (1) the values for the similarity measures used by the approach,
that is, CDM, CSM, and SSM, in three separate matrices, and (2) how these values
are combined in the method-by-method matrix through a weighted sum.

Figure 15.4 shows how ARIES [9, 11] extracts from the UserManagement class
three new classes having better defined responsibilities than the original class. The
first part of the figure shows the graph that can be obtained from the method-by-
method matrix (note that the edges weighted with 0:0, that is, pairs of methods
having zero coupling, are omitted), while the second part of the figure shows
the connected components obtained after the matrix filtering. In this example, we
arbitrarily set minCoupling D 0:2. Thus, all the edges having weight lower than
0:2 (that represent spurious relationships between methods) are removed from the
graph. The extracted components correspond to the preliminary method chains. The
third part of the figure shows the refinement of the method chains. In particular,
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Fig. 15.2 UserManagement: an example of a Blob class [9]
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a trivial chain composed of only one method (checkUser) is added to the most
coupled non trivial chain (i.e., C1). In the end, ARIES recommends splitting the
original class into three new classes.

ARIES aims at guiding the developer through the entire refactoring process.
In fact, ARIES provides support for: (1) identifying Blob classes candidate for
Extract Class refactoring, (2) recommending the refactoring solution (i.e., how to
split the Blob class), and (3) applying the refactoring, while preserving the system
behavior. The recommended refactoring solutions have been empirically evaluated
through quality metrics and user studies [9] and the results show that ARIES’s
recommendations: (a) strongly increase the cohesion of the refactored classes
without leading to significant increases in terms of coupling; (b) are considered
useful by developers performing extract class refactoring; and (c) are able to
approximate manually performed refactoring operations with 91 % accuracy.

Extract Package Refactoring

Extract Package refactoring is similar to Extract Class refactoring, but it acts at a
different level of granularity. As it is possible to have complex classes grouping
together unrelated responsibilities (i.e., Blobs), it is also possible to observe the
same phenomenon at a higher granularity level: packages grouping together classes
implementing unrelated responsibilities. These packages are known as “Promis-
cuous packages” and usually have low cohesion. The aim of Extract Package
refactoring is to split a promiscuous package into different cohesive packages group-
ing together classes implementing similar responsibilities. Promiscuous packages
often implement entire subsystems grouping together hundreds of classes. As with
the Extract Class refactoring, in order to perform Extract Package refactoring, the
developer needs to analyze all classes in the promiscuous package, understand their
responsibilities, and group together in new packages those implementing similar
things. This is a difficult and time-consuming task. To provide support for this
refactoring, some of the techniques proposed for software re-modularization could

http://www.refactoring.com/catalog/extractPackage.html
http://www.refactoring.com/catalog/extractPackage.html
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be easily adapted [e.g., 47,56]. One way is to consider the classes of the promiscuous
package as the entire set of classes to re-modularize and apply one of the approaches
existing in literature to organize the classes into new packages (i.e., to split the
promiscuous package into new ones).

Alternatively, the approach proposed by Bavota et al. [10] for identifying Extract
class refactoring operations can be customized for recommending Extract Package
refactoring solutions as well. Using a graph theory-based algorithm (similar to the
one used for Extract Class refactoring in ARIES) it is possible to exploit structural
and semantic relationship between classes to extracts chains of strongly related
classes in the package to be refactored. The classes of the original package are
distributed in different packages according to the extracted chains. If the number of
extracted chains is one, then no re-modularization is recommended by the tool (this
generally happens when the cohesion of the analyzed package is high). Otherwise,
based on the extracted class chains, the approach recommends new packages with
higher cohesion than the original package. Note that the aim of this approach is to
suggest how to split a package (previously identified by the software engineer as
a candidate for re-modularization) in smaller, more cohesive packages, while the
implementation of the refactoring in the software system is left to the developer.
However, it is worth noting that preserving the system behavior for refactoring
operations acting at class level (like extract package refactoring) is quite simple,
since it is enough to update package declarations and imports in the impacted classes
(i.e., the moved ones and those using them). The evaluation of the approach has
been performed on five systems. On four of them, original developers have been
involved in the evaluation of the meaningfulness of the recommended refactoring
operations, while on the fifth one external developers performed the same task.
Overall, developers evaluated as meaningful 77 % of the recommended refactoring
operations [10].

Extract Method Refactoring

The Extract Method refactoring is generally applied on methods composed by
several code fragments performing different actions. In particular, code fragments
implementing a specific and isolable action are extracted and grouped into a
new method. Smaller methods increase the chance of code-reuse and ease code
comprehension.

Identifying Extract Method refactoring opportunities is far from trivial. The
analysis of the history of a software system can be worthwhile for supporting
such a tasks. The conjecture is that statements in a method that change together
are good candidate to be extracted from the original method aiming at creating
a new independent method [44]. In order to identify the set of methods that
change together, it is possible to use a weighted dependence graph (WPDG) [44],
which is an extended program dependence graph (PDG) where edges are weighted
based on the modification histories of the methods. Specifically, each node of
the graph represents a statement of the method under analysis, while the weight
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of the edge that connect two statements i and j represents the likelihood that
when changing i the developer also changes j . Once the WPDG is obtained, a
threshold is used to distinguish which edges ought to remain or vanish. It is worth
noting that eliminating edges with a weight lower than the fixed threshold results
in splitting the original WPDG in several subgraphs. Then, the new methods are
obtained considering every reachable path from the method entry node on the split
WPDG [44].

It is clear that when historical information are not available or they are poor,
it is not possible to accurately identify Extract Method refactoring operations.
An alternative source of information for identify such refactoring operations can be
derived by using slicing [69]. A slice is an executable subset of program statements
that preserves the original behavior of the program with respect to a subset of
variables of interest and at a given program point [69]. It can be computed both
statically or dynamically. In the context of refactoring, fine slicing is particularly
suitable for identifying Extract Method refactoring operations [1]. Fine slicing
is a technique to compute executable program slices and can be used to extract
noncontiguous pieces of code and untangle loops [2]. The extracted slices can be
used to decompose a long method body into different methods, each with a precise
responsibility.

Other than fine slicing, more sophisticated slicing-based techniques can be used
to identify Extract Method refactoring operations. As proposed by Chatzigeorgiou
[67], Extract Method refactoring solutions can be identified by employing two
slicing techniques:

1. A complete computation slice is used to identify all the statements in a method
affecting the computation of a given variable.

2. An object state slice is used to capture the statements affecting the state of a given
object.

The proposed approach has been implemented as a fully automated technique in the
JDeodorant Eclipse plugin. The evaluation, performed with a designer, shows that
the proposed technique is able to capture slices of code implementing a distinct and
independent functionality compared to the rest of the original method and thus leads
to extracted methods with useful functionality.

15.2.2 Improving Names and Code Location

Other refactoring operations aimed at improving names and code locations. Con-
cerning the former, having meaningful names for methods and fields is essential for
easier code comprehension [36]. Thus, Rename Method (Rename Field) refactoring
should be applied when the name of a method (field) does not reveal its purpose,
compromising the code comprehension. Abebe and Tonella [4] propose an approach
that could be used to support these refactorings. Their technique exploits ontological
concepts and relations automatically extracted from the source code to suggest
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identifiers names. While the approach has not been evaluated in the context of
refactoring, it represents a good starting point for Rename Method (Rename Field)
recommendation systems.

Refactorings improving the location of code aim at grouping together similar
responsibilities in order to ease code comprehension and maintenance. Examples
of such refactoring operations are the Move Method refactoring, Move Field
refactoring, and Move Class refactoring. Move Field is applied when a field is used
by another class more than the class on which it is defined [27]. However, in this
family of refactorings, most researchers focused on Move Method and Move Class
refactoring.

Move Method Refactoring

This refactoring is targeted to solve the bad smell known in literature as “Feature
Envy” [27]. This smell arises when a method seems to be more interested in a
class other (known as envied class) than the one it is implemented in, e.g., the
method invokes getter methods of another object many times [27]. Usually, this
negatively influences the cohesion and the coupling of the class in which the method
is implemented. In fact, the method suffering of feature envy reduces the cohesion
of the class because it likely implements different responsibilities with respect to
those implemented by the other methods of the class and increases the coupling,
due to the many dependencies with methods of the envied class.

By applying the Move Method refactoring, the method is moved to the envied
class. Unfortunately, not all the cases are cut-and-dried. Often a method uses
features of several classes, thus the identification of the appropriate envied class
(as well as the method to be moved) is not always trivial especially in large software
systems [66]. For this reason, approaches to support move method refactoring have
been proposed by researchers.

A simple way to identify Move Method refactoring operations can be obtained by
analyzing the abstract syntax tree (AST) of a software system [5]. Specifically, for
each field in a given class it is possible to determine the set of methods referencing
the field by traversing the AST. If a foreign method makes too many references
to a number of distinct fields, then the method should be moved into the class
under analysis. An empirical evaluation of this approach—conducted on ten C++
systems—indicates that 88 % of the recommended refactorings were meaningful.
Alternatively, the identification of Move Method refactoring could be formulated
as an optimization problem, that is, finding a location for a specific method that
optimize some quality metrics, such as cohesion and coupling [62]. Since the search
space is huge, meta-heuristic search algorithms, such as Genetic Algorithms (GA),
can be used to find a pseudo-optimal solution. An empirical evaluation conducted on
an open source system confirms the suitability of GA for identifying Move Method
refactoring operations [62].

Note that the two approaches described above are just meant to recommend
the refactoring operation to perform and not to apply it on the software system
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Fig. 15.5 Algorithm used for the extraction of Move Method refactoring operations proposed by
Tsantalis and Chatzigeorgiou [66]

(by ensuring behavior preservation). A fully automated approach for move method
refactoring has been proposed by Tsantalis and Chatzigeorgiou [66]. The approach,
implemented in the JDeodorant Eclipse plugin, is able to identify move method
refactoring operations as well as to apply them in the system by preserving the
behavior. The algorithm used by their approach is shown in Fig. 15.5. Given a
method m, the approach forms a set of candidate target classes where m should
be moved (set T in Fig. 15.5). This set is obtained by examining the entities (i.e.,
attributes and methods) that m accesses from the other classes (entity set S in
Fig. 15.5). In particular, each class in the system containing at least one of the
entities accessed by m is added to T . Then, the candidate target classes in T are
sorted in descending order according to the number of entities that m accesses from
each of them (sort.T / in Fig. 15.5). In the following steps, each target class T Œi �

is analyzed to verify its suitability to be the recommended class. In particular, T Œi �

must satisfy three conditions to be considered in the set of candidate suggestions:
(1) T Œi � is not the class m currently belongs to, (2) m modifies at least one data
structure in T Œi �, and (3) moving m in T Œi � satisfies a set of behavior preserving
preconditions (see Tsantalis and Chatzigeorgiou [66] for the complete description
of these preconditions). The set of classes in T satisfying all the above described
conditions are put in the suggestions set (see Fig. 15.5). If suggestions is not
empty, the approach suggests to move m in the first candidate target class following
the order of the sorted set T . On the other side, if suggestions is empty, the classes
in the sorted set T are again analyzed by applying milder constraints than before.
In particular, if a class T Œi � is the m owner class, then no refactoring suggestion
is performed and the algorithm stops. Otherwise, the approach checks if moving
the method m into T Œi � satisfies the behavior preserving preconditions. If so, the
approach suggests to move m into T Œi �. An empirical evaluation conducted on open
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source systems indicate that the refactoring operations proposed by the approach
make sense from the point of view of the designer involved in the evaluation.

The approach described above uses only structural information (e.g., method
calls) for identifying Move Method refactoring opportunities. However, analyzing
identifiers and comments in the source code can derive “semantic” information
that could be combined with structural information aiming at identifying more
meaningful Move Method refactoring operations. This is the idea behind Method-
book [52], an approach that analyzes methods to extract words contained in
comments and identifiers. Then, a light-weight static analysis is performed to
detect: (1) structural dependencies between methods (i.e., method calls and shared
instance variables), and (2) the original system design. The extracted structural and
semantic information is provided as input to Relational Topic Model (RTM) [20],
a probabilistic topic modeling technique representing documents (i.e., methods)
as random mixtures over latent topics, where each topic is characterized by a
probabilistic distribution over words and is represented by a set of words mostly
relevant for explaining the topic. The provided structural information are used by
RTM to adjust the probability distribution of each topic taking into account explicit
relationships between documents. In Methodbook, explicit relationships between
documents (methods) are modeled through (i) the structural dependencies existing
among the methods, and (ii) the original design. The same set of behavior preserving
preconditions defined by Tsantalis and Chatzigeorgiou [66] are applied in Method-
book, allowing the automatic application of the suggested move method refactorings
on the software system. A preliminary evaluation indicates that Methodbook was
able to correctly place about 70 % of the analyzed methods.

Move Class Refactoring

Move Class refactoring aims at solving one of the main reasons for architectural
erosion in software systems: inconsistent placement of source code classes in
software packages [3]. Such a scenario negatively impacts the package cohesion
and also increases the number of dependencies (coupling) between packages [35].
In such cases, re-modularization of the system is necessary [27, 50]. While most
of the approaches existing in literature focus on proposing a new, system level re-
modularizations to the developer [e.g., 30,40,56,71], using Move Class refactoring
it is possible to perform a more focused and fine-grained re-modularization, by
moving the misplaced class into a more suitable package of the system, that is, one
that has classes more functionally related to it than the one it is placed in. Identifying
Move Class refactoring opportunities in a large software system is not easy, due to
the number of classes contained in it and to the intricate web of relationships existing
among them.

Like the Move Method refactoring, the identification of Move Class refactoring
operations can be formulated as an optimization problem [3]. Specifically, starting
from an initial decomposition, a search-based approach can be adopted for automat-
ically reducing (structural) dependencies between packages of a software system by
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moving classes between the original packages. An empirical evaluation confirms the
benefits of such an approach; by applying the recommended refactoring operations
it is possible to achieve improvements in package cohesion together with coupling
reduction.

It is worth noting that besides structural information, semantic information can
also be used to identify Move Class refactoring operations [14]. Specifically, the
analysis of underlying latent topics in source code (acquired via RTM) can be
combined with structural dependencies aiming at identifying more meaningful
refactoring operations. An empirical evaluation confirms the benefits of such a
combination. Specifically, the combined approach provides not only a coupling
reduction among the software modules, but also recommendations that are consid-
ered by developers meaningful from a functional point of view [14].

Note that, as explained for the Extract Package refactoring, all approaches
recommending move class refactoring operations can be easily automated to
preserve the system behavior due to the fact that this refactoring acts at class level.

15.2.3 Improving Conformance with Object-Oriented
Programming Principles

All refactoring operations aimed at improving encapsulation, inheritance, and
polymorphism fall in this category.

For example, Replace Conditional With Polymorphism refactoring is applied
when in a class there is a conditional expression choosing a different behavior
depending on the type of an object [27]. Applying this refactoring (1) the method
containing the conditional expression is converted in an abstract method, and
(2) each branch of the conditional expression is moved into an overriding method
in a subclass. In this way, it is possible to benefit of all advantages derived by
polymorphism.

Encapsulate Field refactoring is used to make private a field, providing getters
and setters method to access it from the outside (if needed). This refactoring
improves the encapsulation of the code by ensuring that all accesses to a field are
managed by explicitly designed methods.

Other refactoring operations improve the inheritance organization of objects. As
example, Pull Up Method (Pull Up Field) refactoring is used when two subclasses
inheriting from the same class implement exactly the same method (field) while
Push Down Method (Push Down Field) refactoring is used when a method (field)
implemented in a superclass is of interest only for some of its subclasses [27].

While no techniques have been proposed in literature for supporting Replace
Conditional With Polymorphism and Encapsulate Field refactoring, an approach
dealing with the improvement of the inheritance organization of objects have been
proposed by O’Keeffe and Ó Cinnéide [51]. They formulate the task of refactoring
as a search problem in the space of alternative designs. The alternative designs are
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generated by applying a set of refactoring operations. In particular, the refactoring
types considered in this work are: push down field, pull up field, pull down method,
pull up method, extract hierarchy, and collapse hierarchy. The search for the optimal
design is guided by a quality evaluation function based on eleven object-oriented
design metrics, that is, the Chidamber and Kemerer [21] (CK) metrics [21] that
reflects refactoring goals. The results achieved in the reported experimentation show
that the presented approach is able to improve the design quality of a given system
from a quality metric point of view.

15.3 Building a Refactoring Recommendation System

When building a refactoring recommendation system there are two critical issues to
deal with:

1. Capturing relationships existing between code components. This step is very
important since the goal of several refactoring operations (e.g., Extract Class,
Move Method, Move Field, Extract Subclass, Extract Package, Pull Up Method,
etc.) is to re-organize code components in such a way that related components
(i.e., those implementing similar responsibilities) are grouped together. There
are different sources of information that can be exploited to capture relationships
between the code components object of the refactoring.

2. Define the algorithm to generate the refactoring recommendation. Each algo-
rithm has strengths and weaknesses. On the basis of the refactoring operations to
support, an algorithm ensuring a fair compromise of strengths and weaknesses
must be chosen.

In the following section, we present some guidelines on how to deal with these
two issues.

15.3.1 Capturing Relationships Between Source Code
Components

The analysis of the relationships existing between code components can be made
from different perspectives. Most of the techniques existing in literature exploit
structural information extracted by statically analyzing the source code to capture
different relations between components (e.g., classes), such as, the number of
calls between two entities, variable accesses, or inheritance relations. A second
option is dynamic information, which takes into account call relationships occurring
during program execution. In addition, textual (i.e., semantic) information can be
exploited to capture relations between code components from the code lexicon using



www.manaraa.com

404 G. Bavota et al.

Information Retrieval (IR) techniques [6]. Finally, historical data can be used to
identify co-changing code components.

The refactoring approaches existing in literature mostly exploit structural and
semantic information and not so much the dynamic and historical information.3 This
is due to the fact that structural and semantic information are easily obtainable from
the source code while dynamic and historical ones are very difficult to collect and
not always available. Moreover, recent work showed that using only structural and
semantic information it is possible to capture almost all relationships captured with
dynamic and historical information [13]. Thus, in the following, we only discuss
structural and semantic relationships extracted from the source code to support
software refactoring.

Structural Relationships

In this section we discuss the sources of information capturing structural relation-
ships (i.e., structural coupling) between code components. Table 15.2 summarizes
the sources of information exploited by the approaches in literature.

Method Calls. The most obvious source of information that can be exploited to
capture structural relationships between code components is the calls interaction.
Method Calls as source of information to capture relationships between code com-
ponents have been exploited in many refactoring recommendation approaches [3,5,
9, 12, 14, 25, 51, 52, 62, 63, 66] (see Table 15.2 for details). Methods generally call
each other when co-operating in the implementation of some responsibilities. This
source of information can be useful for refactoring operations acting at both method
(e.g., Extract Class, Move Method) and class (e.g., Extract Package, Move Class)
level.

Methods with high call interactions are good candidates to be grouped together
when performing refactoring operations acting at method level. As example, this
source of information is important for Extract Class refactoring (i.e., which methods
of the class to be split should be grouped together), for Inline Method (i.e., which
methods co-operate so much that merging one into another would be better to reduce
coupling) and so on. A measure capturing method call interactions is the CDM [12].
CDM has values in [0, 1]; the higher the number of calls between two methods, the
higher the CDM value and thus, the coupling between methods.

The calls between methods belonging to different classes also represent fre-
quently used information to measure coupling between classes. In fact, it is rea-
sonable to think that classes having many call interactions co-operate to implement
the same (or strongly related) responsibilities and thus, are highly coupled. This
information is particularly important for refactoring operations aimed at improving

3The only exception is represented by the approach proposed by Maruyama and Shima [44] that
exploits historical information.
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Table 15.2 Sources of information exploited in the literature to capture relationships between
code components

Supported Method Shared Inheritance Original Semantic
Reference refactoring calls variables relationships decomposition similarity

[63] Extract class X X
[25] Extract class X X
[12] Extract class X X X
[9] Extract class X X X
[5] Move method X
[62] Move method X X
[66] Move method X X
[52] Move method X X X X
[1] Extract

method
X

[67] Extract
method

X

[10] Extract
package

X X

[3] Move class X X
[14] Move class X X X
[51] Multiple

refactor-
ings

X X X X

the modularization quality of Object-Oriented systems, e.g., Extract Package, Move
Class. There are many metrics available in literature to measure the coupling
between classes based on their call interactions. Examples are the information-flow-
based coupling (ICP) [37] and the message passing coupling (MPC) [38].

Shared Instance Variables. The instance variables shared by two methods are
an important source of information for refactoring operations acting at method
level (e.g., Extract Class, Move Method). In fact, they also represent a form
of communications between methods (performed through shared data). Thus,
methods sharing instance variables are more coupled than methods not sharing any
data. Shared Instance Variables as source of information to capture relationships
between code components have been used in many refactoring recommendation
approaches [1, 3, 9, 12, 14, 25, 51, 52, 62, 63, 66, 67] (see Table 15.2 for details).

A measure to capture this form of coupling between methods is the SSM [28],
used to compute the cohesion metric ClassCoh [28]. SSM has values in [0, 1]; the
higher the number of instance variables the two methods share, the higher the SSM
value is and thus, the coupling between methods.

Inheritance Relationships. A source of structural information to capture rela-
tionships between classes (and thus useful to refactoring acting at class level) are
the inheritance dependencies existing among them. Exploiting this information is
mandatory when working on approaches aimed at supporting refactoring operations
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that modify the class hierarchy, e.g., Extract Subclass, Extract Superclass, Pull
Up Method, Push Down Method. Inheritance relationships have been exploited
to support refactoring operations dealing with improving class hierarchy [51] (see
Table 15.2).

Generally, the measurement of inheritance relationships between two classes is
performed through a simple boolean value: true if two classes have inheritance
relationships or false otherwise.

Original Decomposition. A last source of structural information that can be
exploited to capture relationships between code components is the original decom-
position or, in other words, the choices made by the developers when designing the
system. For example, if the developers placed two methods inside the same class it
is reasonable to assume that from their point of view these two methods are in some
way related. For instance, in case of Move Method refactoring, this information
can be used to take into account the choices made by the original developers when
suggesting refactoring operations. The same conjecture can be also made at class
level: if two classes were implemented in the same package by the developers, it
is likely that from their point of view these two classes were in some way related.
Information about the original decomposition has been used for Move Method [52]
and Move Class [14] refactorings (see Table 15.2).

Semantic Relationships

The semantic relationships between code components are computed by measuring
their textual similarity. If the vocabulary of two code components (i.e., methods
or classes) is very similar, then it is likely that the developers used similar terms
to describe similar responsibilities implemented by the two components. This
information can be useful to support all kinds of refactoring aimed at grouping
together similar code components, at both method and class level.

IR techniques have been employed to measure the textual similarity between
code components. Semantic coupling can be captured at both method and class
level. The CSM has been introduced by Marcus et al. [41] to define the conceptual
cohesion of classes (C3) and the conceptual coupling between classes (CCBC) [55].
Two methods are conceptually related if their (domain) semantics are similar, that is,
they perform conceptually similar actions. In order to compute CSM between two
methods, Marcus et al. propose the use of latent semantic indexing (LSI) [23], an
advanced IR method that can be used to compute the textual similarity between the
two methods. Clearly, the higher the similarity, the higher the conceptual similarity.

Semantic relationships have been exploited in several refactoring recommenda-
tion approaches [9, 10, 12, 14, 52] (see Table 15.2 for details).
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Table 15.3 Algorithms exploited in the literature to identify refac-
toring recommendations

Refactoring
operation Approach References

Extract class Clustering-based [25, 63]
Graph-based [9, 12]

Move method Heuristic-based [5, 52, 66]
Search-based [62]

Extract method Slicing-based [1, 67]
Extract package Graph-based [10]
Move class Search-based [3]

Heuristic-based [14]
Combination of

multiple
operations

Search-based [51]

15.3.2 Define the Algorithm to Generate the Refactoring
Recommendations

The choice of algorithm to be applied in order to identify a refactoring solution
mainly depends on the refactoring operations that we are interested in supporting.
Table 15.3 reports the algorithms reported in literature, classified by the supported
refactoring operation. The algorithms fall in five categories: (1) clustering-based,
(2) graph-based, (3) search-based, (4) slicing-based, and (5) heuristic-based.

Clustering algorithms are particularly well-suited to support refactoring oper-
ations dealing with splitting of complex decomposition units (e.g., Blob classes,
promiscuous packages) into simpler ones. In fact, these algorithms have been
mainly used to support Extract Class refactoring. The main problem to solve with
these algorithms is related to the definition of the number of clusters to form. As
example, partitioning algorithms like k-means [31] explicitly require as input the
number of clusters to be generated, that is, the number of classes that should be
extracted from the Blob in case of Extract Class refactoring. This means that a
developer performing Extract Class refactoring should know a priori the number
of different responsibilities implemented in the Blob class, which is not a realistic
assumption. Heuristics approximating the optimal number of clusters could be
applied (e.g., the silhouette heuristic [60]). However, the performance of these
heuristics in the refactoring field is currently unknown. Another possibility are
hierarchical agglomerative algorithms, successfully applied by Fokaefs et al. [25].
Such algorithms start by placing each entity to be clustered in a single cluster.
Then, at each iteration, merge the two most similar clusters, terminating when all
entities are contained in a single cluster. The output of hierarchical agglomerative
algorithms is represented with a dendrogram, a tree diagram where the leafs of the
tree represent the entities to cluster while the remaining nodes represent possible
clusters the entities belong to, up to the root representing a cluster containing all the
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entities. The distance between merged clusters increases with the level of the merger
(starting from the leaves toward the root). This means that nodes (i.e., clusters)
at a higher level group together entities having higher distance (lower similarity)
between them. In fact, the top node, that is, the root of the tree, groups all entities
in a single cluster, while the bottom nodes (i.e., the leaves) place each entity in a
distinct cluster. Finding the right level where to cut the dendrogram (i.e., determine
the clusters) is a difficult problem that has to be solved by applying heuristics (e.g.,
the one defined by Fokaefs et al. [25]).

Other algorithms used to support refactoring aimed at simplifying complex
decomposition units (i.e., Extract Class, and Extract Package) are those based
on graph theory. First, a weighted-graph representation of the complex object to
decompose is built. Each node in the graph represents one of the entities composing
the complex object. For example, these components could be the classes of a
promiscuous package in need of Extract Package refactoring. As for the weight
on the edge connecting two nodes, it can be used to represent the relationships
between them (i.e., how similar they are). Having a graph-based representation,
it is possible to apply graph partitioning algorithms in order to split the original
graph representing the complex object into subgraphs representing the new simpler
objects to extract. Examples are the Max Flow-Min Cut algorithm applied by
Bavota et al. [12] that, however, suffers of a strong limitation: it always splits the
complex object into two new simpler objects. This means that, for example, each
Blob class is always split into two new classes, independently from the different
responsibilities implemented in it. Another possibility is to identify disconnected
components in the graph, as done by Bavota et al.[9]. However, several different
choices can be made by looking at graph theory-based algorithms [64]. Generating
a unique refactoring solution using graph-based algorithms is generally easier than
adopting clustering algorithms. While the solution generated by using graph-based
algorithms is unique, they do not provide to the developer alternative solutions like,
for example, the hierarchical agglomerative algorithms.

When the refactoring operation to support is Extract Method, slicing-based
algorithms represent the most obvious choice. In fact, slicing algorithms allow
to decompose a large method (generally the kind of methods targeted for this
refactoring) into different smaller methods, each one represented by a slice. Thus,
a slicing algorithm, generally in its static variant, represents the natural solution for
this kind of refactoring.

Widely used to support Move Method refactoring are heuristic-based algo-
rithms [5,24,52,66]. When the problem faced by the refactoring operation is to move
pieces of code to a more appropriate place, a simple analysis of the dependencies
between code components can be enough. For example, to recommend that a
method m, implemented in a class Cm, should be moved to a new class Cn:

1. Count the dependencies existing between m and Cm. The dependencies to
analyze depend on the sources of information exploited by the approach (see
Sect. 15.3.1).

2. Count the dependencies existing between m and Cn.
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3. If the dependencies between m and Cn are more than those existing between m

and Cm, then recommend moving m in Cn.

Finally, search based algorithms can be applied to all kinds of refactoring
operations. Not by chance, they are the only algorithms applied when the goal is
to support a combination of multiple refactoring operations, as done by O’Keeffe
and Ó Cinnéide [51]. In these algorithms, the task of refactoring is formulated as
a search problem in the space of alternative designs. The alternative designs are
generated applying a set of refactoring operations supported by the approach. The
search for the optimal design is guided by a quality evaluation function, usually
based on code quality metrics. The strengths of these algorithms is their generality.
On the weaknesses side, given the nondeterministic component of these algorithms,
they may recommend a different refactoring solution at each run. Nondeterminism
is not a desirable property for a refactoring recommendation system.

15.4 Evaluating a Refactoring Recommendation System

The evaluation of a refactoring recommendation system represents another chal-
lenge. This is due to the fact that, unlike other fields (e.g., traceability recovery, bug
prediction, etc.), in most cases no oracles are available to evaluate the performance
of the recommendation systems. In this section, we report some evaluation strategies
that can be useful in the evaluation of refactoring recommendation systems.

15.4.1 Evaluation Based on Quality Metrics

The easiest way to get a first evaluation of a refactoring recommendation system is
to exploit quality metrics. In other words, selected quality metrics are measured in
a software system before and after the application of the recommended refactoring
operations to verify if the internal software quality of the system is improved with
the application of the refactoring operations. For instance, there are several quality
metrics available in literature that have been demonstrated to capture different
aspects of software maintainability. For example, the previously presented MPC
metric (see Sect. 15.3.1) directly correlates with the maintenance effort [37], that
is, higher MPC values (higher coupling) indicate higher effort in maintaining
a software system. Thus, refactoring recommendations reducing the MPC in a
software system are certainly preferable to those increasing the MPC. As another
example, the CCBC metric (see Sect. 15.3.1) has been used to support change
impact analysis. Thus, two classes exhibiting high CCBC are likely to be co-
changed during a modification activity performed in a system. Consequently,
refactoring recommendations (e.g., Move Class refactoring) able to group in the
same software module classes having high CCBC between them could reduce the
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effort needed by a developer to localize the change. This clearly results in more
manageable maintenance activities.

Several empirical studies provided evidence that high levels of coupling and
lack of cohesion are associated with lower productivity, greater rework, and more
design effort for developers [7,16–18,21]. In addition, lower cohesion and/or higher
coupling of classes have been shown to correlate with higher defect rates [29,39,41].
Thus, refactoring recommendation systems should suggest refactoring operations
able to improve a software system from the quality metrics point-of-view (e.g.,
increase cohesion and reduce coupling).

It is important to highlight that, while metrics-based evaluations allow to easily
compare different recommendation systems, they are affected by many threats
to validity. First, in all the software metrics evaluations there is a risk that the
improvements in terms of the quality metrics achieved by applying the proposed
refactoring operations are obtained by construction. In fact, the information used
by the recommendation systems to identify refactoring opportunities (e.g., method
calls, shared instance variables, semantic similarity) are often the same exploited by
the quality metrics. For example, all Extract Class recommendation systems exploit
information like method calls and shared instance variables to identify cohesive
clusters of methods that can be extracted from the Blob class. Since this information
is the same used by cohesion metrics (e.g., lack of cohesion of methods [21], which
uses information about shared instance variables), the increase of cohesion achieved
after performing a recommended Extract Class refactoring is expected. Thus, even if
a software metric evaluation is needed to verify that a refactoring technique does not
negatively affect the software quality, this kind of evaluation should not be central in
the evaluation of a new technique. Besides improving quality metrics it is necessary
to show that recommended refactoring operations are meaningful from a developer’s
point of view. In fact, improvements in quality metrics are not always enough to
justify the need to change the original design from the developers’ point of view.

Many approaches [3, 9, 12, 14, 25, 62, 66, 67] have been evaluated using quality
metrics (see Table 15.4). Results of these evaluations generally showed improve-
ments in the values of the chosen metrics. For instance, the Extract Class refactoring
approach proposed by Bavota et al. [9] was able to increase the cohesion of
the refactored Blob classes of over five times. Other approaches, like those for
Move Method refactoring, achieve smaller improvements due to the fact that
the applied refactoring is quite circumscribed. For example, the approach by
Tsantalis and Chatzigeorgiou [66] was able to improve class cohesion by 3 %, on
average.

15.4.2 Evaluation Based on Historical Information

Developers are not always available for evaluating a refactoring recommendation
systems. A possible solution to evaluate the recommended refactoring from a
developer’s point-of-view, without directly involving developers is to simulate
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Table 15.4 Evaluations performed in the literature to experiment a refactoring recommendation
system

Supported Quality Historical External Original
Reference refactoring metrics information developers developers

[63] Extract class
[25] Extract class X X
[12] Extract class X X
[9] Extract class X X X
[5] Move method X
[62] Move method X X
[66] Move method X X
[52] Move method
[1] Extract method
[67] Extract method X X
[10] Extract package X X
[3] Move class X
[14] Move class X X X
[51] Multiple

operations
X

their presence by using as oracle refactoring operations previously performed by
developers.4 These refactoring operations can be obtained by using available tools
that able to identify refactoring operations performed among two subsequent version
of a software system. For example, the Ref-Finder tool [57] is able to identify 63
different types of refactoring. The tool is not 100 % precise, but the refactoring
operations retrieved by it can be manually validated in order to obtain a reliable
oracle on which to test the refactoring recommendation system. For example,
suppose that we want to evaluate a Move Method refactoring recommendation
system. We can identify the move method refactoring operations performed by
developers of an open source system S between version 1.0 and version 1.1 of S .
Then, we can apply our refactoring recommendation system on the version 1.0 of S
and measure (e.g., through precision and recall) to what extent the recommended
refactoring operations reflect those performed by the original developers. If the
recommendation system is able to propose with a good accuracy the refactoring
actually performed by original developers this means that (1) the recommended
refactoring operations are (at least by some approximation) meaningful from a
developer’s point-of-view and (2) the recommendation systems can effectively
support the developers in the identification of refactoring solutions.

To date, this type of evaluation has been only exploited in the evaluation of
ARIES [9], used for Extract Class refactoring. In this work, the authors use Ref-
Finder [57] to mine the history of six open source systems looking for extract

4For more information on simulation techniques to evaluate recommendation systems, see Walker
and Holmes [68] in Chap. 12.
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class refactoring operations performed by the original developers. Note that Ref-
Finder retrieves Extract Class refactoring operations as a set of Move Method and
Move Field operations from the original class to the new extracted classes. Thus, a
manual validation has been performed on the sets of Move Method and Move Field
refactoring retrieved by Ref-Finder to identify extract class refactoring operations.
Then, ARIES has been applied to the classes refactored by the developers to measure
how far is the refactoring recommendation from the refactoring performed by the
original developers. To this aim, the MoJo effectiveness measure (MoJoFM) [70]
has been used. The MoJoFM is a normalized variant of the MoJo distance and it is
computed as follows:

MoJoFM.A;B/ D 1 � mno.A;B/

max.mno.8 A;B//

where mno.A;B/ is the minimum number of Move or Join operations to perform in
order to transform the partition A into B , and max.mno.8 A;B/ is the maximum
possible distance of any partition A from the gold standard partition B . Thus,
MoJoFM returns 0 if a clustering algorithm produces the farthest partition away
from the gold standard; it returns 1 if a clustering algorithm produces exactly the
gold standard.

ARIES achieved a 0.91 MoJoFM value, on average, for the 11 classes on which
it has been applied [9].

15.4.3 Evaluation with Developers

The best scenario for evaluating a refactoring recommendation system is when
developers are available to rate the meaningfulness of the recommended refactoring
operations (e.g., through a Likert scale [53]).

We distinguish two kinds of studies that could be performed. The first is
performed with original developers, that is, the developers evaluate the refactoring
operations on systems they developed in the past. The second is performed with
external developers, that is, the developers evaluate the refactoring operations on
systems they do not know. The evaluations performed with original developers are
preferred since external developers do not have a deep knowledge of the design of
the subject system under analysis and thus may not be aware of some of the design
choices that could appear as suboptimal, but that are the results of a rational choice.
However, studies with external developers can complement studies performed with
original developers. In fact, even if the original developers have deep knowledge
of the system’s design, they could be the authors of some bad design choices and
consequently could not recognize good recommended refactorings as meaningful.
This threat can be mitigated by conducting a study with the external developers.

Several authors have performed evaluations with original developers [25,
66], while external developers have also been involved in several empirical
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evaluations [5, 12, 51, 62, 67]. Some works have involved both types of devel-
opers [10, 14] (see Table 15.4). Generally, the results achieved in such evaluations
showed that most of the refactoring suggestions generated by the experimented tools
are appreciated by developers that recognize their meaningfulness. For instance, the
approach proposed by Bavota et al. [14] to support Move Class refactoring has been
evaluated with 48 external developers and 10 original developers. More than 70 %
of the suggested Move Class refactoring operations have been judged as meaningful
by the subjects.

15.5 Conclusion

Refactoring is an important activity employed to improve the quality of a software
system during its evolution. Different refactoring operations might improve different
quality aspects of a system. In particular, there are more than 90 different refactoring
operations defined in the Fowler’s catalog. Most of the refactoring operations are
simple source code transformations aimed at increasing source code comprehension.
Others are really complex and their application is error-prone and time consuming.
This is the reason why in the last decade a lot of effort has been devoted to the
definition of approaches able to recommend nontrivial refactoring operations (e.g.,
Extract Class refactoring).

In this chapter, we have described and analyzed the state of the art, while deriving
guidelines for building as well as evaluating a refactoring recommendation system.
The analysis of the literature has also allowed to identify some open issues.

Preserving the System Behavior. A first issue is related to the intrinsic definition
of refactoring. In theory, a refactoring should not change the behavior of a
software system, but only help in improving some of its nonfunctional attributes.
In practice, a refactoring might be risky as any other change occurring in a system,
causing possible bug introductions. A recent study investigated the extent to which
refactoring activities induce bug fixes in software systems [8]. The authors analyzed
a total of 12,922 refactoring operations of 52 different types and found that 15 % of
the analyzed refactorings likely induced faults in the system. Moreover, the authors
found that some specific kinds of refactorings are very likely to induce bug fixes,
such as Pull Up Method and Extract Subclass, where the percentage of fixes likely
induced by such refactorings is around 40 %.

This result could be partially explained by the survey performed by Kim et al.
[34] with 328 Microsoft engineers (of which 83 % developers) to understand (1) the
participants’ own refactoring definition, (2) when and how they refactor code, (3) if
refactoring tools are used by developers, and (4) developers’ perception toward the
benefits, risks, and challenges of refactoring. Three of their findings are related to
the problem of preserving system behavior [34]:
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• While developers recognize refactoring as a way to improve the quality of a
software, in almost 50 % of the cases they do not define refactoring as a behavior-
preserving operation.

• 51 % of developers perform refactoring manually.
• The main risk the developers fear when performing refactoring operations is bug

introduction (77 %).

Some of these findings are also partially confirmed in the study performed by
Murphy-Hill et al. [49]. They analyze eight different datasets trying to understand
how developers perform refactoring. Examples of the exploited datasets are usage
data from 41 developers using the Eclipse environment, data from the Eclipse
Usage Collector aggregating activities of 13,000 developers for almost one year,
and information extracted from versioning systems. The paper discusses several
interesting findings: (i) developers often interleave refactoring with other program-
ming activities (thus, potentially changing the system behavior), and (ii) most of
the refactoring operations (close to 90 %) are performed manually by developers
without the help of any tool.

While the fact that developers mostly perform refactoring manually could explain
the bugs introduced through refactoring as observed by Bavota et al. [8], Das et al.
[22] showed that even automated refactoring performed by Integrated Development
Environments could be fault-prone. They propose a possible solution to ensure that
refactoring engines (i.e., the tools that apply the refactoring operations) correctly
transform the program when applying refactoring operations. In particular, Das
et al. [22] proposed an approach to automate the testing of refactoring engines.
The technique generates ASTs of the refactored Java programs (to date the only
supported programming language) to verify that the behavior of the system remains
unchanged after the application of the refactoring operations. Their approach was
able to identify 45 previously unreported bugs in Eclipse and NetBeans, two of the
most popular refactoring engines for Java [22]. Thus, the approach by Das et al.
[22] certainly represent a good way to verify that a refactoring recommendation
tool correctly applies refactoring operations.

Solutions to the problem of behavior preservation during refactoring have been
also proposed by Overbey and Johnson [54], Schäfer et al. [61], and Mens et al.
[46]. However, none of these works have presented a fully generalizable approach
that can be applied for every possible refactoring.

Another possibility to ensure that the performed refactoring does not alter the
system external behavior is to define strong preconditions that must be verified
in order to apply it. An example of this approach is in the technique for Move
Method refactoring presented by Tsantalis and Chatzigeorgiou [66]. The Move
Method refactoring operation is performed only if the involved code components
satisfy all preconditions. However, this “strong preconditions philosophy” has also
been criticized in literature [59] since it could avoid the application of desirable
refactoring operations just because there is a small price to pay in terms of small
adjustments in the source code. The result of this observation has been the program
metamorphosis approach proposed by Reichenbach et al. [59] that relaxes the
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behavior-preservation checks by considering them later in the refactoring process:
when a refactoring alters the external behavior of the system, the approach allows
the user to correct or accept the behavioral changes.

All in all, the problem of ensuring the preservation of the system behavior during
refactoring has still to be solved.

Usability of the Refactoring Recommendation Systems. A second open issue
is related to the usability of the refactoring recommendation system. In general,
recommendations are based only on quality metrics. However, quality metrics do not
tell the whole story about the code and may not be able to capture the perception of
the developer about refactoring. This could generate refactoring operations that are
not usable because the developer is not able to understand why the recommendation
system is proposing a specific refactoring operations. In such a situation the
developer might lose faith in the recommendation system. A way to overcome
such a situation has been recently proposed by Bavota et al. [14]. In particular, the
authors analyze underlying natural language topics in classes not only to identify
refactoring operations but also to identify their responsibilities and provide some
rationale behind the proposed refactoring recommendation. An empirical study
conducted with developers has indicated the usefulness of such an explanation
in understanding (and, consequently, in accepting or rejecting) a recommended
refactoring operation [14]. However, the approach exploited by Bavota et al. [14]
represents a first attempt, while more sophisticated techniques could be used to
automatically derive the rationale behind a recommended refactoring operation
(e.g., by exploiting natural language techniques).

Provide Complete Support to the Developer Performing Refactoring. As of
today, there are no approaches that provide simultaneous and integrated support
to multiple types of refactoring operations. It would be worthwhile to have tools
able to suggest a complete set of refactoring operations of different types able
to improve the design of a software system from different points of view (e.g.,
removal of different types of antipatterns, improved adherence to object-oriented
design practices, etc.). This would also allow to integrate in the refactoring tool
a wider subset of existing refactoring operations. As example, recommending
Rename Method refactoring solutions could be worthwhile if combined with Extract
Method recommendations. In fact, automatically assigning a name reflecting the
responsibility implemented in the extracted method can save developers’ time.
Note that in the literature the goal of covering more refactoring operations is
accomplished in part in the work by O’Keeffe and Ó Cinnéide [51] where, however,
only refactoring operations working on class hierarchies are combined together.

Also, most of the approaches in the literature have not been implemented in IDEs
and this does not encourages developers in using them, as revealed in the existing
studies [34, 49]. While the integration of refactoring approaches in IDEs is far from
trivial for the reasons discussed above (i.e., behavior preservation, usability of the
tools), more effort should be spent in this direction.
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Chapter 16
Recommending Program Transformations

Automating Repetitive Software Changes

Miryung Kim and Na Meng

Abstract Adding features and fixing bugs in software often require systematic edits
which are similar but not identical changes to multiple code locations. Finding all
relevant locations and making the correct edits is a tedious and error-prone process.
This chapter presents several state-of-the art approaches to recommending program
transformation in order to automate repetitive software changes. First, it discusses
programming-by-demonstration (PBD) approaches that automate repetitive tasks
by inferring a generalized action script from a user’s recorded actions. Second, it
presents edit location suggestion approaches that only recommend candidate edit
locations but do not apply necessary code transformations. Finally, it describes
program transformation approaches that take code examples or version histories as
input, automatically identify candidate edit locations, and apply context awareness,
customization program transformations to generate a new program version. In par-
ticular, this chapter describes two concrete example-based program transformation
approaches in detail, Sydit and Lase. These two approaches are selected for an
in-depth discussion, because they handle the issue of both recommending change
locations and applying transformations, and they are specifically designed to update
programs as opposed to regular text documents. The chapter is then concluded with
open issues and challenges of recommending program transformations.

16.1 Introduction

Recent work observes that software evolution often requires systematic and repet-
itive changes. Developers apply similar but not identical changes to different
contexts [23, 24, 34, 45]. Nguyen et al. [45] find that 17 to 45 % of bug fixes are
recurring fixes that involve similar changes to numerous methods. Another class of
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systematic changes occur when application programming interface (API) evolution
requires all the clients to update their code [17] or when developers refactor code
to improve its internal structure. Cross-system bug fixes happen frequently among
forked software products such as FreeBSD, NetBSD, and OpenBSD, despite the
limited overlap of contributors [6, 54]. Manual application of systematic changes is
tedious and error-prone. Developers must find all required change locations, rewrite
those locations manually, and test the modifications. A failure to systematically
extend software may lead to costly errors of omissions and logical inconsistencies.

For example, Fig. 16.1 shows a systematic change example drawn from revisions
to org.eclipse.debug.core on 2006-10-05 and 2006-11-06, respectively. The
unchanged code is shown in black, additions in blue with a blue“C,” and deletions
in red with a red“�.” Consider methods mA and mB: getLaunchConfigurations
(ILaunchConfigurationType) and getLaunchConfigurations(IProject).
These methods iterate over elements received by calling getAllLaunchConfig

urations(), process the elements one by one, and add it to a predefined list when
an element meets a certain condition.

Suppose that Pat intends to apply similar changes to mA and mB. In mA, Pat wants
to move the declaration of variable config out of the while loop and to add code
to process config, as shown in lines 5 and 7–11 in mA. Pat wants to perform a
similar edit to mB, but on the cfg variable instead of config. This example typifies
systematic edits. Such similar yet not identical edits to multiple methods cannot be
applied using existing refactoring engines in integrated development environment,
because they change the semantics of a program. Even though these two program
changes are similar, without assistance, Pat must manually edit both methods, which
is tedious and error-prone.

Existing source transformation tools automate repetitive changes by requiring
developers to prescribe the changes in a formal syntax. For example, TXL [8] is a
programming language designed for software analysis and source transformation. It
requires users to specify a programming language’s structure (i.e., syntax tree) and a
set of transformation rules. TXL then automatically transforms any program written
in the target language according to the rules. These tools can handle nontrivial
semantics-modifying changes, such as inserting a null-check before dereferencing
an object. However, it requires developers to have a good command of language
syntax and script programming [3, 4, 19].

Refactoring engines in IDEs automate many predefined semantics-preserving
transformations. When performing a refactoring task (e.g., rename method), devel-
opers only need to decide the refactoring type and provide all necessary information
(e.g., the old and new name of the method) as input to enable the transformation.
Then the refactoring engines automatically check predefined constraints to ensure
that the transformation preserves semantics before actually making the transfor-
mation. Although some tools allow developers to define new refactoring types,
specifying refactoring preconditions and code transformation from scratch is time
consuming and error-prone.

Existing interactive text-editing approaches, such as a search-and-replace feature
of a text editor, can help developers look for edit locations based on keywords or
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1 public ILaunchConfiguration[] getLaunchConfigurations
2 (ILaunchConfigurationType type) throws CoreException {
3 Iterator iter = getAllLaunchConfigurations().iterator();
4 List configs = new ArrayList();
5 + ILaunchConfiguration config = null;
6 while (iter.hasNext()) {
7 - ILaunchConfiguration config = (ILaunchConfiguration)iter.next

();
8 + config = (ILaunchConfiguration)iter.next();
9 + if (!config.inValid()) {

10 + config.reset();
11 + }
12 if (config.getType().equals(type)) {
13 configs.add(config);
14 }
15 }
16 return (ILaunchConfiguration[])configs.toArray
17 (new ILaunchConfiguration[configs.size()]);
18 }

a

1 protected List getLaunchConfigurations(IProject project) {
2 Iterator iter = getAllLaunchConfigurations().iterator();
3 + ILaunchConfiguration cfg = null;
4 List cfgs = new ArrayList();
5 while (iter.hasNext()) {
6 - ILaunchConfiguration cfg = (ILaunchConfiguration)iter.next();
7 + cfg = (ILaunchConfiguration)iter.next();
8 + if (!cfg.inValid()) {
9 + cfg.reset();

10 + }
11 IFile file = cfg.getFile();
12 if (file != null && file.getProject().equals(project)) {
13 cfgs.add(cfg);
14 }
15 }
16 return cfgs;
17 }

b

Fig. 16.1 Systematic edit from revisions of org.eclipse.debug.core [37]. (a) mAo to mAn.
(b) mBo to mBn

regular expressions, and apply edits by replacing the matching text at each location
with user-specified text. These approaches treat programs as plain text. Therefore,
they cannot handle nontrivial program transformations that require analysis of
program syntax or semantics.

This chapter presents several state-of-the art approaches that overcome these
limitations by leveraging user-specified change examples. First, it discusses
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programming-by-demonstration (PBD) approaches that automate repetitive tasks
by inferring a generalized action script from a user’s recorded actions. However,
these PBD approaches are not suitable for updating code as they are designed for
regular text. Second, it presents edit location suggestion approaches that stop at only
recommending candidate locations but do not apply necessary code transformations.
Thus these approaches still require programmers to edit code manually. Finally, it
describes program transformation approaches that take code change examples
as input, automatically identify candidate edit locations and also apply context-
aware, customized program transformations to generate a new program version. In
particular, this chapter describes two concrete techniques in detail, Sydit [36, 37]
and Lase [38]. We chose to describe these two in detail because Lase has the most
advanced edit capability among the techniques that handle both issues of finding
edit locations and applying transformation and Sydit is the predecessor of Lase.

Given an exemplar edit, Sydit generates a context-aware, abstract edit script,
and then applies the edit script to new program locations specified by the user.
Evaluations show that Sydit is effective in automating program transformation.
However, the tool depends on the user to specify edit locations.

Lase addresses this problem by learning edit scripts from multiple examples as
opposed to a single example [38]. Lase (1) creates context-aware edit scripts from
two or more examples, uses these scripts to (2) automatically identify edit locations
and to (3) transform the code. Evaluation shows that Lase can identify edit locations
with high precision and recall.

There are several open issues and remaining challenges in recommending
program transformations based on examples. First, it is currently difficult for
developers to view recommended program transformations, especially when the rec-
ommendation spans across multiple locations in the program. Second, it is difficult
for developers to check correctness of the recommended program transformations,
because none of the existing techniques provide additional support for validating
recommended edits. Third, the granularity of program transformations is limited to
intra-function or intra-method edits at large, making it difficult to apply high-level
transformations such as modifications to class hierarchies and method signatures.
Finally, existing techniques are limited to automating homogeneous, repetitive edits,
but leave it to developers to coordinate heterogeneous edits.

16.2 Motivation

Software Evolution Often Requires Systematic Changes. This insight arises
from numerous other research efforts, primarily within the domain of crosscutting
concerns and refactorings. Crosscutting concerns represent design decisions that are
generally scattered throughout a program such as performance, error handling, and
synchronization [21, 59]. Modifications to these design decisions involve similar
changes to every occurrence of the design decision. Refactoring is the process
of improving internal software structure in ways that do not alter its external
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behavior. Refactoring often consists of one or more elementary transformations,
such as “moving the print method in each Document subclass to its superclass” or
“introducing three abstract visit* methods.” Another class of systematic changes
occur when the evolution of an application programming interface (API) requires all
API clients to update their API usage code [17], though the details can vary from
location to location [19]. A recent study of bug fixes shows that a considerable
portion of bug fixes (17–45 %) are actually recurring fixes that involve similar
edits [45]. Another study on code changes finds that on average 75 % of changes
share similar structural-dependence characteristics, e.g., invoking the same method
or accessing the same data field [23]. These studies indicate that systematic code
updates are common and often unavoidable.

Manual Implementation of Systematic Changes Is Tedious and Error-Prone.
Purushothaman and Perry [53] found that only about 10 % of changes (in one, large
industrial system) involve a single line of code, but even a single line change has
about a 4 % chance of resulting in an error; on the other hand, changes of 500 lines
or more have nearly a 50 % chance of causing at least one defect. Eaddy et al. [11]
find that the more scattered the implementation of a concern is, the more likely
it is to have defects. Murphy-Hill et al. [43] find that almost 90 % of refactorings
are performed manually without the help of automated refactoring tools. These
refactorings are potentially error-prone since they often require coordinated edits
across different parts of a system. Weißgerber and Diehl [64] find that there is an
increase in the number of bugs after refactorings. Kim et al. [22] also find a short-
term increase in the number of bug fixes after API-level rename, move, and signature
change refactorings. Some of these bugs were caused by inconsistent refactorings.
These studies motivate automated tool support for applying systematic edits.

Systematic Changes Are Generally not Semantics-Preserving and They Are
Beyond the Scope and Capability of Existing Refactoring Engines. To inves-
tigate the challenges associated with refactorings, Kim et al. [25] conducted a
survey with professional developers at Microsoft. They sent a survey invitation
to 1,290 engineers whose commit messages include a keyword “refactoring” in
the last 2 years of version histories of five MS products; 328 of them responded
to the survey. More than half of the participants said they carry out refactorings
in the context of bug fixes or feature additions, and these changes are generally
not semantics-preserving transformations. In fact, when developers are asked about
their own definition of refactoring, 46 % of participants did not mention preservation
of semantics, behavior, or functionality at all. During a follow-up interview, some
developers explicitly said, “Strictly speaking, refactoring means that behavior does
not change, but realistically speaking, it usually is done while adding features or
fixing bugs.” Furthermore, over 95 % of participants in the study said that they do
most refactorings manually; 53 % reported that refactorings that they perform do not
match the types and capability of transformations supported by existing refactoring
engines. This motivates a flexible, example-based approach for applying systematic
program transformations.
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16.3 State-of-the Art Approaches to Recommending
Program Transformations

This section describes state-of-the art approaches to recommending program
transformations, compares these approaches using a unified framework, and
discusses their strengths and weaknesses. We first discuss individual approaches and
present comparison results in Tables 16.1–16.3. Table 16.1 shows the comparison of
existing approaches in terms of input, output, edit type, and automation capability.
Table 16.2 describes the comparison of existing approaches in terms of edit
capability: the second column shows whether each technique can handle single
line or multiple-line edits; the third column shows whether each technique handles
a sequence of contiguous edits or non-contiguous edits; the fourth column shows
whether it supports only replication of concrete edits or edits that can be customized
to individual target contexts; and the last column shows whether the technique
models surrounding unchanged code or not. Table 16.3 shows the comparison of
existing approaches, in terms of evaluation subjects, programming languages, data
set size, and assessment methods.

16.3.1 Programming-by-Demonstration

Programming-by-example [30] (PbE) is a software agent-based approach that
infers a generalized action script from a user’s recorded actions. SMARTedit [28]
automates repetitive text edits by learning a series of functions such as “move a
cursor to the end of a line." Like macro recording systems, SMARTedit learns
the program by observing a user performing her or his task. However, unlike
macro-recorders, SMARTedit examines the context in which the user’s actions
are performed and learns programs that work correctly in new contexts. Using a
machine learning concept called version space algebra, SMARTedit is able to learn
useful text-editing after only a small number of demonstrations. Similarly, Visual
AWK [27] allows users to interactively generalize text edits.

Several approaches learn string manipulations or a skeleton of repetitive editing
tasks from examples or demonstrations. For example, the Editing by Example (EBE)
system looks at the input and output behavior of the complete demonstration [47].
EBE synthesizes a program that generalizes the transformation expressed by text
change examples. The TELS system records editing actions, such as search-and-
replace, and generalizes them into a program that transforms input into output [65].
TELS also uses heuristic rules to match actions against each other to detect loops in
the user’s demonstrated program. However, TELS’s dependence on domain-specific
heuristic rules makes it difficult to apply the same techniques to a different domain,
such as editing Java programs. The Dynamic Macro system of Masui and Nakayama
[32] records macros in the emacs text editor. Dynamic Macro performs automatic
segmentation of the user’s actions, breaking up the stream of actions into repetitive
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Table 16.2 Comparison of existing approaches in terms of edit capability

Multiple vs. Contiguous vs. Abstract vs. Context
Tool Single non-contiguous concrete modeling

Visual AWK [27] Single Contiguous Concrete No
EBE [47] Single Contiguous Concrete No
TELS [65] Single Contiguous Concrete No
Dynamic macro system [32] Single Contiguous Concrete No
Cima [33] Single Contiguous Concrete Yes
Simultaneous text editing [41] Single Contiguous Concrete No
Linked editing [60] Multiple Non-contiguous Concrete Yes
CloneTracker [10] Multiple Non-contiguous Concrete Yes
Clever [46] Multiple Non-contiguous Concrete Yes
Trident [19] Single Non-contiguous Abstract No
Program synthesis [13] Single Contiguous Concrete No

Reverb [34, 35] – – – –
DQL [62] – – – –
PQL [31] Single Contiguous Abstract Yes
PR-Miner [29] – – – –
HAM [5] – – – –
Find-concept [57] – – – –
FixWizard [45] – – – –
LibSync [44] – – – –

iXj [4] Single Contiguous Abstract No
ChangeFactory [55] – – – –
spdiff [2] Single Contiguous Abstract No
Coccinelle [48] Single Contiguous Abstract No
ClearView [50] Multiple Non-contiguous Abstract Yes
Weimer et al. [63] Single Contiguous Concrete No
Sydit [36, 37] Multiple Non-contiguous Abstract Yes
Lase [18, 38] Multiple Non-contiguous Abstract Yes

subsequences, without requiring the user to invoke the macro-editor explicitly.
Dynamic Macro performs no generalization and relies on several heuristics for
detecting repetitive patterns of actions. The Cima system [33] learns generalized
rules for classifying, generating, and modifying data, given examples, hints, and
background knowledge. It allows a user to give hints to the learner to focus its
attention on certain features, such as the particular area code preceding phone
numbers of interests. However, the knowledge gained from these hints is combined
with a set of hard-coded heuristics. As a result, it is unclear which hypotheses Cima
is considering or why it prefers a certain inferred program over another. In general,
these PBD approaches are not suitable for editing a program because they do not
consider a program’s syntax, control, or data dependencies.

Simultaneous text editing automates repetitive editing [41]. Users interactively
demonstrate their edit in one context and the tool replicates identical, lexical edits
on the preselected code fragments. Simultaneous text editing cannot easily handle
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similar yet different edits because its capability is limited in instantiating a syntactic,
context-aware, abstract transformation. Linked Editing [60] applies the same edits
to a set of code clones specified by a user. CloneTracker [10] takes the output of a
clone detector as input and automatically produces an abstract syntax-based clone
region descriptor for each clone. Using this descriptor, it automatically tracks clones
across program versions and identifies modifications to the clones. Similar to Linked
Editing, it uses the longest common subsequence algorithm to map corresponding
lines and to echo edits in one clone to other counterparts upon a developer’s
request. The Clever version control system detects inconsistent changes in clones
and propagates identical edits to inconsistent clones [46]. Clever provides limited
support in adapting the content of learned edits by renaming variable names suitable
for target context. However, because Clever does not exploit program structure,
when abstracting edits, it does not adapt the edit content to different contexts
beyond renaming of variables. Trident [19] aims to support refactoring of dangling
references by permitting the developer to specify lexical and syntactic constraints
on search terms and replacement terms, locating potential matches and applying
requested replacements; an iterative process is supported allowing the developer to
back out of a given requested change atomically.

Program synthesis is the task of automatically synthesizing a program in
some underlying language from a given specification using some search tech-
niques [13]. It has been used for a variety of applications such as string manipulation
macros [14], table transformation in Excel spreadsheets [16], geometry construc-
tion [15], etc. The synthesizer then completes the program satisfying the specifi-
cation [58]. However, these program synthesis approaches do not currently handle
automation of similar program changes in mainstream programming languages such
as Java because they do not capture control and data flow contexts nor abstract
identifiers in edit content.

In summary, the programming by demonstration approaches can learn edits from
examples, but they are mostly designed for regular text documents instead of pro-
grams. Thus they cannot handle program transformations that require understanding
program syntax and semantics.

In Table 16.1, the top one-third compares the above-mentioned PBD approaches
in terms of inputs, outputs, and automation capability. Column Type describes
the type of edit operations: textual edit vs. syntactic edits vs. semantic edits. Col-
umn Location describes whether each technique can find locations automatically,
semiautomatically, or manually. Column Transformation describes whether each
technique can apply transformations automatically, semiautomatically, or manually.
Table 16.1 shows that most PBD approaches can handle only textual edits or they
are very limited in terms of syntactic program editing capability.

In Table 16.2, the top one-third compares the above-mentioned PBD approaches
in terms of edit capability. Column Multiple vs. Single shows whether each
technique can apply multiline or single line edits. Column Contiguous vs.
Non-contiguous describes whether each technique can only apply contiguous
program transformations or also apply transformations separated with gaps.
Column Abstract vs. Concrete describes whether each technique can apply
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customized abstract edits to different edit locations or simply apply identical
concrete edits. Column Context Modeling describes whether each technique
models the surrounding unchanged code relevant to edit operations in order to
position edits correctly. The symbol “—” is recorded when a technique does not
apply any edit automatically. Table 16.2 shows that most PBD approaches handle
only concrete edits and are unable to apply edits customized to fit target program
contexts.

Furthermore, as shown in Table 16.3, some techniques do not have any user study
or only have done a study involving a handful of editing tasks. When the symbol
“—” is recorded for Subjects, Data size, and Evaluation means no empirical study
is reported. “—” recorded for Lng. (Language) means the technique targets plain
text instead of any specific programming language.

16.3.2 Edit Location Suggestion

Code matching and example search tools can be used to identify similar code
fragments that often require similar edits. Reverb [34] watches the developer make
a change to a method and searches for other methods in the project where the
syntax and semantics are similar to the original ones of the exemplar; however,
it does not apply the transformations. DQL [62] helps developers to locate code
regions that may need similar edits; developers can write and make queries involving
dependence conditions and textual conditions on the system-dependence graph of
the program so that the tool automatically locates code satisfying the condition.
PQL [31] is a high-level specification language focusing on specifying patterns
that occur during a program run. The PQL query analyzer can automatically detect
code regions matching the query. Similarly, PR-Miner [29] automatically extracts
implicit programming rules from large software code and detects violations to the
extracted programming rules, which are strong indications of bugs. While all these
tools could be used to identify candidate edit locations that may require similar edits,
none of these tools help programmers in automatically applying similar changes
to these locations. There are other tools that are similar to PQL and PR-Miner,
such as JQuery [9] or SOUL [40]. While they can be used to find edit locations
via pattern matching, they do not have a feature of automatically applying program
transformations to the found code snippets. Similarly, Castro et al. diagnose and
correct design inconsistencies but only semiautomatically [7].

Concern mining techniques locate and document crosscutting concerns [5, 57].
Shepherd et al. [57] locate concerns using natural language program analysis. Breu
and Zimmermann [5] mine aspects from version history by grouping method-calls
that are added together. However, these tools leave it to a programmer to apply
similar edits, when these concerns evolve. We do not exhaustively list all concern
mining techniques here. Please refer to Kellens et al. [20] for a survey of automated
code-level aspect mining techniques. In Chap. 5, Mens and Lozano [39] discuss
techniques that recommend edit locations based on mined source code patterns.
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FixWizard identifies code clones, recognizes recurring bug fixes to the clones,
and suggests edit locations and exemplar edits [45]. Yet, it does not generate
syntactic edits, nor does it support abstraction of variables, methods, and types.
LibSync helps client applications migrate library API usages by learning migration
patterns [44] with respect to a partial AST with containment and data dependencies.
Though it suggests example API updates, it is unable to transform code. These
limitations leave programmers with the burden of manually editing the suggested
edit locations, which is error-prone and tedious.

In summary, the middle parts of Tables 16.1–16.3 show the comparison of the
above-mentioned edit location suggestion techniques. These techniques can be used
to find changed locations automatically, but leave it to developers to manually apply
necessary transformations. While the evaluation of some techniques involves real
open source project data, none evaluates them in the context of a user applying
similar program transformations to the found locations.

16.3.3 Generating and Applying Program Transformations
from Examples

To reduce programmers’ burden in making similar changes to similar code
fragments, several approaches take code change examples as input, find change
locations, and apply customized program transformations to these locations.
These approaches are fundamentally different from source transformation tools
or refactoring engines, because users do not need to specify the script of
repetitive program transformations in advance. Rather, the skeleton of repetitive
transformations is generalized from change examples. This section lists such
approaches and discusses their capability.

Sydit takes a code change example in Java as input and automatically infers
a generalized edit script that a user can use to apply similar edits to a specified
target [36,37]. Their subsequent work Lase uses multiple change examples as input,
automatically infers a generalized edit script, locates candidate change locations,
and applies the inferred edit to these change locations [38]. Both Sydit and Lase
infer the context of edit, encode edit positions in terms of surrounding data and
control flow contexts, and abstract the content of edit scripts, making it applicable
to code that has a similar control and data flow structure but uses different variable,
type, and method names.

iXj [4] and ChangeFactory [55] provide interactive source transformation tools
for editing a program. iXj does not generalize code transformation, though it has
a limited capability of generalizing the scope of transformation. ChangeFactory
requires a user to generalize edit content and location manually.

To support API migration, Lawall et al. [1, 2, 48] find differences in the API
usage of client code, create an edit script, and transform programs to use updated
APIs. Their approach is limited in two respects: the edit scripts are confined
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to term-replacements and they only apply to API usage changes. While it uses
control- and data-dependence analysis to model the context of edits [1], the inferred
context includes only inserted and deleted API method invocations and control and
data dependencies among them. Their context does not include unchanged code on
which the edits depend. Thus, when there is no deleted API method invocation,
the extracted context cannot be used to position edits in a target method. Sydit is
more flexible, because it computes edit context that is not limited to API method
invocations and it can include unchanged statements related to edits. Therefore,
even if the edits include only insertions, Sydit can correctly position edits by finding
corresponding context nodes in a target method.

Automatic program repair generates candidate patches and checks correctness
using compilation and testing [50, 63]. For example, the approach of Perkins et al.
[50] generates patches that enforce invariants observed in correct executions but are
violated in erroneous executions. It tests patched executions and selects the most
successful patch. Weimer et al. [63] generate their candidate patches by replicating,
mutating, or deleting code randomly from the existing program and thus far have
focused on single line edits.

In summary, the bottom one-third of Tables 16.1–16.3 summarizes the compari-
son of the above-mentioned techniques. While these techniques can be used to find
edit locations and apply transformations, some can handle only single line edits or
contiguous edits. Very few can go beyond replication of concrete edits.

In the next two sections, we discuss two concrete example-based program
transformation approaches in detail, Sydit and Lase. These two approaches are
selected to discuss in depth for two reasons. First, they are specifically designed for
updating programs as opposed to regular text documents. Second, they handle the
issue of both recommending edit locations and applying transformations. They also
have strengths of modeling change contexts correctly and customizing edit content
appropriately to fit the target contexts. We discuss Sydit first, because Lase extends
Sydit by leveraging multiple edit examples instead of a single example.

16.4 SYDIT: Generating Program Transformations
from a Single Example

This section describes Sydit [37], which generates an abstract, context-aware edit
script from a single changed method and applies it to a user-specified target. To
facilitate illustration, we use Fig. 16.1 as a running example throughout this section.

16.4.1 Generating an Edit Script from a Single Example

There are two phases in Sydit. Phase I takes as input an old and new version of
method mA to create an abstract, context-aware edit script �. Phase II applies � to
a target method, mB, producing a modified method mBs .
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Fig. 16.2 Extraction of a syntactic edit from Aold and Anew and identification of its context [37]

Phase I: Creating Edit Scripts. Given mAo and mAn, Sydit compares their syntax
trees using a program differencing tool [12], to create an edit �A D Œe1; e2; : : : ; en�,
as a sequence of abstract syntax tree (AST) node additions, deletions, updates, and
moves, described as follows:

insert (Node u, Node v, int k) Insert u and position it as the .k C 1/th child of v.
delete (Node u) Delete u.
update (Node u, Node v) Replace u’s label and AST type with v’s while maintain-

ing u’s position in the tree.
move (Node u, Node v, int k) Delete u from its current position and insert it as

the .k C 1/th child of v.

For our example, the inferred edit �A between mAo and mAn is shown below.

1. update (“ILaunchConfiguration config = (ILaunchConfiguration)

iter.next();”, “ILaunchConfiguration config = null;”)
2. move (“ILaunchConfiguration config = null;”, ‘’protected List

getLaunchConfigurations(IProject project){”, 2)
3. insert (“config = (ILaunchConfiguration)iter.next();”,

“while (iter.hasNext()){”, 0)
4. insert (“if (config.inValid()) {!”, “while (iter.hasNext()){”, 1)
5. insert (“then”, “if (config.inValid()) {!”, 0)
6. insert (“config.reset()”, “then”, 0)

Figure 16.2 shows the edit in a graphical way. It indexes all nodes to simplify
explanation. For each edit, Sydit extracts relevant context from both old and new
versions of a changed method using control-, data-, and containment-dependence
analysis. Here, the context relevant to an edit includes the edited nodes and nodes
on which they depend. For instance, since the inserted node N7 is contained by
and control dependent on N5, data dependent on N2 and N4, N2, N4, N5, and N7 are
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Fig. 16.3 Abstract edit script
derived from Fig. 16.2 [37]

extracted as context relevant to the insert operation. The extracted context reflects
the control-, data-, and containment-dependence constraints the exemplar changed
method has on the derived edit. Given a target method, Sydit looks for the context’s
correspondence in the method to ensure that all underlying constraints are satisfied.
If such a correspondence is found, Sydit infers that a similar edit is applicable to the
method, ignoring statements irrelevant to the edit.

Sydit then creates an abstract, context-aware edit script �, by replacing all
concrete types, methods, and variables with unique symbolic identifiers $Tx, $mx,
and $vx, where x is a number, and recalculating each edit operation’s location
with respect to its extracted context. This step generalizes the edit script, making
it applicable to code using different identifiers or structurally different code. For
instance, Fig. 16.3 shows a resulting abstract edit script derived from Fig. 16.2. It
abstracts the config variable in mA to $v2. After removing all irrelevant statements,
for the moved ILaunchConfiguration declaration, Sydit calibrates its source
location as a child position 0 of while (i.e., its first AST child node), and target
location as a child position 1 of the method declaration node.

Phase II: Applying Edit Scripts. When given a target method, Sydit looks for
nodes in the method that match the abstract context nodes in � and induce one-
to-one mappings between abstract and concrete identifiers. The node mapping
problem can be rephrased as a subtree isomorphism problem, which looks for a
subtree in the target method’s AST matching the given context’s tree. Sydit uses an
algorithm specially designed to solve the problem [37]. The algorithm establishes
node matches in a bottom-up manner. It first establishes matches for all leaf nodes
in the context tree, and then does so for all inner nodes based on leaf matching
result. If every node in the abstract context finds a unique correspondence in the
target method’s tree, Sydit infers that the abstract edit script can be customized to
an edit script applicable to the method. It then establishes identifier mappings based
on the node mappings. In our example, mBo contains a subtree corresponding to the
abstract context for �, so Sydit can create a concrete edit script for mBo out of �.
Since Sydit establishes a mapping between the abstract node $T2 $v2 = null and
concrete node ILaunchConfiguration cfg = null, it aligns the identifiers used
and infers mapping $T2 to ILaunchConfiguration , $v2 to cfg.

Sydit next proceeds to generate concrete edits for the target. With identifier map-
pings derived above, it replaces abstract identifiers used in � with corresponding



www.manaraa.com

438 M. Kim and N. Meng

concrete identifiers found in the target method, such as replacing $v2 with cfg.
With node mappings derived above, it recalculates each edit operation’s location
with respect to the concrete target method. For example, it calibrates the target move
location as child position 1 of mBo’s method declaration node. After applying the
resulting edit script to mBo, Sydit produces a suggested version mBs , which is the
same as mBn shown at the bottom of Fig. 16.1.

16.4.2 Evaluation

Sydit is evaluated on 56 method pairs that experienced similar edits from Eclipse
JDT Core, Eclipse Compare, Eclipse Core Runtime, Eclipse Debug, and jEdit. The
two methods in each pair share at least one common syntactic edit and their content
is at least 40 % similar according to the syntactic differencing algorithm of Fluri
et al. [12]. These examples are then manually inspected and categorized based
on (1) whether the edits involve changing a single AST node vs. multiple nodes,
(2) whether the edits are contiguous vs. non-contiguous, and (3) whether the edits’
content is identical vs. abstract over types, methods, and identifiers. Table 16.4
shows the number of examples in each of the six categories. Note that there are only
six categories instead of eight, since non-contiguous edits always involve multiple
nodes.

For each method pair (mAo, mBo) in the old version that changed similarly to
become (mAn, mBn) in the new version, Sydit generates an edit script from mAo and
mAn and tries to apply the learned edits to the target method mBo, producing mBs ,
which is compared against mBn to measure Sydit’s effectiveness. In Table 16.4,
“matched” is the number of examples for which Sydit matches the change context
learnt from mA to the target method mBo and produces some edits. The “compilable”
row is the number of examples for which Sydit produces a syntactically valid
program, and “correct” is the number of examples for which Sydit replicates edits
that are semantically identical to what the programmer actually did, i.e., that mBs is
semantically equivalent to mBn.

The “coverage” row is
“matched”

“examples”
; and “accuracy” is

“correct”

“examples”
:

The “similarity” measures how similar mBs is to mBn for the examples which Sydit
can match learnt context and produce some edits. The results are generated using
Sydit’s default context extraction method, i.e., one source node and one sink node
for each control- and data-dependence edge, in addition to a parent node of each
edited node, since the configuration is evaluated to produce the best results. For this
configuration, Sydit matches the derived edit context and creates an edit for 46 of
56 examples, achieving 82 % coverage. In 39 of 46 cases, the edits are semantically
equivalent to the programmer’s hand edit. Even for those cases in which Sydit
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Table 16.4 Sydit’s coverage and accuracy on preselected
targets [37]

Single node Multiple nodes

Contiguous Non-contiguous

Identical SI CI NI

examples 7 7 11
matched 5 7 8
compilable 5 7 8
correct 5 7 8

coverage 71% 100% 73%
accuracy 71% 100% 73%
similarity 100% 100% 100%

Abstract SA CA NA

examples 7 12 12
matched 7 9 10
compilable 6 8 9
correct 6 6 7

coverage 100% 75% 83%
accuracy 86% 50% 58%
similarity 86% 95% 95%

Total coverage 82% (46/56)
Total accuracy 70% (39/56)
Total similarity 96% (46)

produces a different edit, the output and the expected output are often similar. On
average, Sydit’s output is 96 % similar to the version created by a human developer.
While this preliminary evaluation shows accuracy for applying a known systematic
edit to a given target location, it does not measure the accuracy for applying the
edit to all locations where it is applicable because Sydit is unable to find edit
locations automatically. The next section describes the follow-up approach (Lase)
that leverages multiple examples to find edit candidates automatically.

16.5 LASE: Locating and Applying Program
Transformations from Multiple Examples

Sydit produces code transformation from a single example. It relies on programmers
to specify where to apply the code transformation, and it does not automatically
find edit locations. This section describes Lase, which uses multiple edit examples
instead of a single example to infer code transformation, automatically searches for
edit locations, and applies customized edits to the locations [38].
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16.5.1 Why Learning from Multiple Examples?

The edit script inferred by Sydit is not always well suited to finding edit locations
for two reasons. First, the mechanism of learning from a single example cannot
disambiguate which changes in the example should be generalized to other places
while which should not. As a result, it simply generalizes every change in the
example and thus may overspecify the script. The over-specification may make the
extracted edit context too specific to the example, failing to match places where it
should have matched. Second, the full identifier abstraction may over generalize the
script, allowing the extracted edit context to match places that it should not have
matched, because they use different concrete identifiers.

Lase seeks an edit script that serves double duty, both finding edit locations and
accurately transforming the code. It learns from two or more exemplar edits given
by the developer to solve the problems of over-generalization and over-specification.
Although developers may also want to directly create or modify a script, since they
already make similar edits to more than one place, providing multiple examples
could be a natural interface.

We use Fig. 16.4 as a running example throughout the section. Consider the three
methods with similar changes: mA, mB, and mC. All these methods perform similar
tasks: (1) iterate over all elements returned by values(), (2) process elements one
by one, (3) cast each element to an object of a certain type, and (4) when an element
meets a certain condition, invoke the element’s update() method. Additionally, mA
and mB also experience some specific changes, respectively. For instance, mA deletes
two print statements before the while loop. mB deletes one print statement inside
the while loop and adds an extra type check and element processing.

16.5.2 Learning and Applying Edits from Multiple Examples

Lase creates a partially abstract, context-aware edit script from multiple exemplar
changed methods, finds edit locations using the extracted context in the edit script,
and finally applies the edit script to each location. There are three phases in Lase.
Phase I takes as input several changed methods, such as mA and mB, to create a
partially abstract, context-aware edit script �p. Phase II uses the extracted context
in �p to search for edit locations which can be changed similarly, such as mC. Phase
III applies �p to each found location and suggests a modified version to developers.
Figure 16.5 shows the inferred edit script from mA and mB in Fig. 16.4. The details
of Lase’s edit generalization, location search, and edit customization algorithms are
described elsewhere [38].
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Fig. 16.4 A systematic edit to three methods based on revisions from 2007-04-16 and 2007-04-30
to org.eclipse.compare [38]. (a) mAo to mAn. (b) mBo to mBn. (c) mCo to mCn
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Fig. 16.5 Partially abstract, context-aware edit script derived from mA and mB [38]

Fig. 16.6 A programmer makes similar but not identical edits to getTrailingComments and
getLeadingComments . While getTrailingComments involves edits to trailing-
Comments and trailingPtr, getLeadingComments involves edits to leading-
Comments and leadingPtr. The two examples are provided as input to Lase to generate a
partially abstract, context-aware edit script [38]

16.5.3 LASE as an Eclipse Plugin

The Lase approach described above is implemented as an Eclipse IDE plugin [18].
Suppose that Bob modifies the code comment processing logic in org.eclipse.

jdt by updating two methods getTrailingComments and getLeadingComments

in org.eclipse.jdt.core.dom.DefaultCommentMapper, shown in Fig. 16.6. In
the getTrailingComments method, he modifies the if condition, modifies an
assignment to range, and inserts a for loop to scan for a given AST node. In
the getLeadingComments method, he makes a similar edit by modifying its if

condition, an assignment to range, and by inserting a for loop. After making these
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repetitive edits to the two methods, Bob suspects a similar edit may be needed to all
methods with a comment processing logic. He uses Lase to automatically search for
candidate edit locations and view edit suggestions.

Input Selection. Using the input selection user interface, Bob provides a set of
edit examples. He specifies the old and new versions of getTrailingComments
and getLeadingComments, respectively. He names this group of similar changes as
a comment processing logic change. He then selects an edit script generation option
to derive generalized program transformation among the specified examples.

Edit Operation View. For each example, using an edit operation view, Bob
examines the details of constituent edit operations (insert, delete, move, and update)
with respect to underlying abstract syntax trees. In this view, Bob can also examine
corresponding edit context—surrounding unchanged code that is control- or data
dependent on the edited code. Figure 16.7a shows edit operations and corresponding
context within the AST of the method getTrailingComments . The AST nodes
include both unchanged nodes and changed nodes which are the source and/or
target of individual insert, delete, move, or update operations. These nodes can be
expanded to show more details.

Edit Script Hierarchy View. To create an edit script from multiple examples, Lase
generalizes exemplar edits, pair-by-pair. Lase creates a base cluster for each method.
It then compares them pair-by-pair. By merging the results of two cluster nodes,
Lase generalizes common edit sequences in the edit hierarchy through a bottom-up
construction.

For example, by opening the edit script hierarchy view shown in Fig. 16.7b,
Bob can examine a group of inferred edit scripts at different abstraction levels. By
default, Lase uses the top node, i.e., an edit script inferred from all examples. By
clicking a node in the edit script hierarchy, Bob may select a different subset of
provided examples to adjust the abstraction level of an edit script. The selected
script is used to search for edit locations and generate customized edits.

Searching for Edit Locations and Applying Customized Edits. Bob begins his
search for edit locations with similar context. In this case, when Lase finishes
searching for the target locations, Bob sees four candidate change locations in the
menu. Two of them are getTrailingComments and getLeadingComments, which
are used as input examples and thus match the context of the inferred edit script—
this provides an additional confirmation that the edit script can correctly describe
the common edits for the two examples.

Bob then examines the edit suggestions for the first candidate method getExt

endedEnd using the comparison view (see Fig. 16.8). He sees that getExtendedEnd
contains the same structure as his example methods. For example, the if statement
checking whether trailingComments is set to null and the assignment to range.
When viewing the Lase’s edit suggestions, Bob notices that the suggested change
involves inserting new variables. Lase cannot infer the names of the new variables
because there are no matching variable names in the target context. Bob thus chooses
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Fig. 16.7 (a) Lase visualizes edit operations and corresponding context with respect to the AST.
(b) Lase learns an edit from two or more examples. Each node in the edit script hierarchy
corresponds to an edit script from a different subset of the input examples [38]

Fig. 16.8 A user can review and correct edit suggestions generated by Lase before approving the
tool-suggested edit [38]
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the names of those variables by replacing $v_1_, $v_2_, and $v_3_ with concrete
names. Choosing variables and any other changes Bob wishes to make could be
easily done by making direct modifications on the edit suggestion in this comparison
view. He applies the modified edits and repeats the process with the other methods.

16.5.4 Evaluation

To measure Lase’s precision, recall, and edit correctness, a test suite of supplemen-
tary bug fixes [49,54] was used. (See Walker and Holmes [61] in Chap. 12 about an
evaluation method using a change history-based simulation). Precision and recall are
regarding identified method-level edit locations and edit correctness measures the
accuracy of applied edits to the found method locations. Supplementary bug fixes
are fixes that span multiple commit, where initial commits tend to be incomplete
or incorrect, and thus developers apply supplementary changes to resolve the issue
or the bug. If a bug is fixed more than once and there are clones of at least two
lines in bug patches checked in at different times, they are manually examined for
systematic changes. Using this method, 2 systematic edits in Eclipse JDT and 22
systematic edits in Eclipse SWT are found.

Meng et al. then use these patches as an oracle test suite for correct systematic
edits and test if Lase can produce the same results as the developers given the first
two fixes in each set of systematic fixes. If Lase, however, produces the same results
as developers do in later patches, it indicates that Lase can help programmers detect
edit locations earlier, reduce errors of omissions, and make systematic edits. Lase
locates edit positions with respect to the oracle data set with 99 % precision, 89 %
recall, and performs edits with 91 % edit correctness. Furthermore, given the test
suite, Lase identifies and correctly edits nine locations that developers confirmed
they missed.

The number of exemplar edits from which Lase learns a systematic edit affects its
effectiveness. To determine how sensitive Lase is to different numbers of exemplar
edits, Meng et al. randomly pick seven cases in the oracle data set and enumerate
subsets of exemplar edits, e.g., all pairs of two exemplar methods. They evaluate
the precision, recall, and edit correctness for each set separately and calculate an
average for exemplar edit sets for each cardinality to determine how sensitive Lase
is to different numbers of exemplar edits. Table 16.5 shows the results.

Our hypothesis is as the number of exemplar edits increases, precision and edit
correctness should decrease while recall should increase, because the more exemplar
edits provided, the less common context is likely to be shared among them, and the
more methods may be found to match the context. However, as shown in Table 16.5,
precision P does not change as a function of the number of exemplar edits except
for case 12, where two exemplar edits cause the highest precision because exemplar
edits are very different from each other. Recall R is more sensitive to the number of
exemplar edits, increasing as a function of exemplars.
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Table 16.5 Lase’s effectiveness when learning from multiple examples [38]

Exemplars (#) P (%) R (%) EC (%)

Index 4 2 100 51 72
3 100 82 67
4 100 96 67
5 100 100 67

Index 5 2 100 80 100
3 100 84 100
4 100 91 100

Index 7 2 100 83 100
3 100 84 100
4 100 88 100
5 100 92 100
6 100 96 100

Index 12 2 78 90 85
3 49 98 83
4 31 100 82

Index 13 2 100 100 95
3 100 100 94
4 100 100 93
5 100 100 91

Index 19 2 100 66 100
3 100 94 100
4 100 100 100
5 100 100 100

Index 23 2 100 72 100
3 100 88 100
4 100 96 100

In theory, edit correctness EC can vary inconsistently with the number of
exemplar edits, because it strictly depends on the similarity between edits. For
instance, when exemplar edits are diverse, Lase extracts fewer common edit
operations, which lowers edit correctness. When exemplar edits are similar, adding
exemplar methods may not decrease the number of common edit operations, but
may induce more identifier abstraction and result in a more flexible edit script, which
increases edit correctness.

16.6 Open Issues and Challenges

This section discusses open issues and challenges of recommending program
transformations from examples.

Finding Input Examples. While the techniques discussed in Sects. 16.4 and 16.5
learn a generalized program transformation script from examples, it is still left to
developers to provide multiple examples for edit script generation and refinement.
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Where do these examples come from? Developers can construct the examples
on purpose or carefully pick them out of the codebase they are working on.
However, a more efficient way is to automatically detect repetitive code changes.
One possibility is to mine software version history for similar code changes [23,26]
by comparing subsequent snapshots of codebase. Another possibility is to observe
developers’ edit actions to recognize recurring code changes by monitoring the
commands or keystrokes a developer inputs.

Granularity. Most approaches in Sect. 16.3 target replication of intra-method
edits. For higher level edits, such as modifying a class hierarchy or delegating an
existing task to a newly created methods, we need more complicated edit types to
define and more sophisticated context modeling approaches to explore. The edit
types should handle the coordination of heterogeneous edits, i.e., various edits to
different program entities, in addition to replication of homogeneous edits. For
instance, an edit type “Rename” includes renaming an entity (i.e., class, method,
field, variable) and modifying all references to the entity. The context modeling
approaches should correlate a changed code entity with other entities in the same
class hierarchy or performing the same task. For instance, if a method is inserted to
an interface, all classes directly implementing the class should be included as edit
context as they need to add implementations for the newly declared method.

Context Characterization. The effectiveness of example-based program transfor-
mation approaches is affected by the amount of dependence information encoded
in the abstract change context C derived from an exemplar edit. For example,
given a statement inserted in a for loop, the edit could be applicable to all
for loops, resulting in higher recall but lower precision. However, if the approach
requires a context with a control-dependence chain that includes an if controlling
execution of the for, then this context will help find fewer candidates and waste
less time on testing extraneous cases. Determining a setting for context extraction
requires a rigorous empirical study: (1) varying the number of dependence hops k,
(2) varying the degree of identifier abstraction for variable, method, and type
names, (3) including upstream- and/or downstream-dependence relations, (4) using
containment dependencies only, etc.

Edit Customization. While some approaches are able to customize edit content
to fit the target context, it is generally difficult to customize edit content in the
target context, when it involves inserted code only. For example, in Lase, edits are
customized based on mapping between symbolic identifiers and concrete identifiers
discovered from a target context. However, such mappings cannot always be found
for inserted code that only exists in the new version. For instance, as shown in
Fig. 16.9, since actionBars only exists in Anew and serviceLocator only exists in
Bnew, it is difficult to infer serviceLocator to use in Bnew from actionBars used
in Anew. In this case, existing approaches borrow verbatim code, actionBars, from
the source edit, and add it to the target edit without recognizing naming conversion
patterns. As a result, it may produce semantically equivalent code with poor
readability: e.g., IServiceLocator actionBars instead of IServiceLocator
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Fig. 16.9 A motivating example for synthesizing target-specific identifiers [37]. (a) Aold to Anew.
(b) Bold to Bsuggested

serviceLocator. A better strategy is to synthesize the target-specific identifiers
by inferring naming patterns from the source edit. This requires a natural language
analysis of programs [52], e.g., semantic analysis of identifier names used in the
target context.

Integrated Compilation and Testing. Existing tools suggest edits without check-
ing correctness, so developers need to decide whether the suggestion is correct on
their own. In extreme cases, when tools provide suggestions with many false posi-
tive, developers may spend more time examining the tools’ useless suggestions than
manually making systematic changes without any tool support. Before suggesting
the edits, a recommendation tool may proactively compile a suggested version and
run regression tests relevant to the proposed edits by integrating existing regression
test selection algorithms. If the suggested version does not fail more tests, a user
may have higher confidence in it. Otherwise, the tool may locate failure-inducing
edits by integrating existing change impact analysis algorithms. This step is similar
to speculatively exploring the consequences of applying quick fix recommendations
in an IDE [42] and can help prevent a user from approving failure-inducing edits.

Edit Validation. During the inspection process, a user may still want to reason
about the deeper semantics of the suggested edits. While this is a program
differencing problem, a naive application of existing differencing algorithms may
not help developers much—by definition, syntactic edits to the source and the target
are the same. A new validation approach is needed to allow developers to focus their
attention to differential deltas—differences between the effect of a reference edit
(Aold to Anew) and the effect of a target edit (Bold to Bsuggested). The insight behind this
approach is that developers may have good understanding of a reference edit already
and what they want to know is subtle semantic discrepancies caused by porting a
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reference edit to a new context. For example, one may compare the control and data
flow contexts of a reference edit against those of a ported edit. Another possible
approach is to compare the path conditions and effects involving a reference edit
against those of a ported edit in the target context [51]. Such semantic comparison
could help developers validate whether there exists behavioral differences.

Edit Script Correction. Before accepting recommendation transformations, a user
may want to correct the derived script or suggested edits. After correction, the
tool may rematch the modified script and recompute the suggested edits, providing
feedback to the user. To detect errors inadvertently introduced by manual edits such
as a name capture of a preexisting variable, the tool must check name binding and
def-use relation preservation [56].

16.7 Conclusion

Systematic changes—making similar but not identical changes to multiple code
locations—are common and often unavoidable, when evolving large software
systems. This chapter has described the existing body of knowledge and approaches
to address this problem. First, it described PBD techniques designed to automate
repetitive tasks and discussed how EBE approaches are inadequate for automating
program transformations due to their inability to model program-specific syntax
and semantics. Second, it overviewed recommendation techniques that suggest
candidate edit locations but do not manipulate code by applying code transforma-
tions to these locations. Third, it described example-based program transformation
approaches that take code change examples as input, infer a generalized program
transformation script, locate matching candidate locations, and apply the script
to these locations. Existing approaches were compared using unified comparison
criteria in terms of required inputs, user involvement, the degree of automation,
edit capability, evaluation method, and scale to date. In particular, this chapter
summarized two approaches, Sydit and Lase. These approaches were selected for an
in-depth discussion because they are the most advanced in terms of their capability
to position edits correctly by capturing the control- and data-flow contexts of the
edits, and to apply non-contiguous, abstract program edits. These strengths make it
possible to apply the inferred script to new contexts in a robust manner. The chapter
concluded with a set of open problems and challenges that remain to be tackled to
fully solve the problem of automating systematic software updates.
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Chapter 17
Recommendation Systems in Requirements
Discovery

Negar Hariri, Carlos Castro-Herrera, Jane Cleland-Huang,
and Bamshad Mobasher

Abstract Recommendation systems offer the opportunity for supporting and
enhancing a wide variety of activities in requirements engineering. We discuss
several potential uses. In particular we highlight the role of recommendation
systems in online forums that are used for capturing and discussing feature requests.
The recommendation system is used to mitigate problems introduced when face-to-
face communication is replaced with potentially high-volume online discussions.
In this context, recommendation systems can be used to suggest relevant topics to
stakeholders and conversely to recommend expert stakeholders for each discussion
topic. We also explore the use of recommendation systems in the domain analysis
process, where they can be used to recommend sets of features to include in new
products.

17.1 Introduction

Requirements engineering covers a variety of different activities focused on the
discovery, analysis, specification, validation, and management of software and
systems requirements [30, 42, 45, 51]. The primary goal of the discovery process is
to elicit and identify stakeholders’ needs, wants, and desires for the software system.
This can be somewhat challenging, especially when stakeholders are geographically
distributed and unable to physically gather together for face-to-face meetings.
Different groups of stakeholders also have differing perspectives and goals for
the system, which can create conflicts and inconsistencies. This is particularly
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troublesome if important stakeholders are missing from the requirements elicitation
and negotiation process [18].

Robertson and Robertson [45] prescribe a rigorous upfront domain analysis and
requirements trawling process which involve identifying and engaging stakeholders,
observing users performing tasks in their natural work environments, and conduct-
ing interviews, surveys, and group brainstorming meetings. These activities are
designed to discover, analyze, and prioritize requirements, to specify use-cases and
business rules, and in some cases to propose and evaluate candidate design solutions.
All of these activities are highly collaborative and people-intensive.

Several recent trends have significantly impacted the way we think about
requirements. The move towards the globalization of software development and
the dispersion of stakeholders across multiple geographical locations [13] makes
communication and coordination more difficult and introduces challenges caused
by diversity in language and culture, lack of engagement in the requirements
discovery process, loss of informal communication between stakeholders, a reduced
level of trust caused by the lack of face-to-face communication, difficulties in
managing conflicts and achieving a common understanding of the requirements,
ineffective decision-making meetings, and process delay introduced by the time
zone differences [17].

The popularity of open source software development has also affected the
requirements process. The collaborative and transparent nature of open source
projects has popularized the notion of opening up the requirements elicitation
process to allow a far broader set of stakeholders to contribute their ideas and
suggestions using an online forum [48]. The impact has been felt even in more
traditional projects.

Finally, the broad adoption of agile approaches has impacted the way in
which we define requirements. As a community, we now embrace the idea that
software requirements may emerge incrementally as the project progresses. This
is particularly true in software-intensive projects as opposed to more traditional
systems engineering projects. In this chapter we therefore focus more on the
ongoing discovery of ideas and features as opposed to the specification of more
traditional requirements.

Recommendation systems can potentially address many of the challenges
involved in the elicitation process. In general, a recommendation system [1]
identifies items of potential interest to a given user based on that user’s preference
profile (see Ying and Robillard [53] in Chap. 8 for more details on user profiles) or
observed behavior. It is not difficult to conceive of stakeholders or even products as
the target of recommendations, and users, topics, or features as the recommendable
items.

In this chapter we provide an overview of several areas of the requirements
process which could potentially benefit from the use of recommendation systems.
We then describe two diverse applications of recommendation in greater detail.
The first uses a recommendation system to support requirements discovery in
online discussion forums by helping to manage and organize stakeholders’ dis-
cussions, recommending discussion threads to stakeholders, and recommending
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knowledgeable stakeholders for specific topics. The second application leverages
the availability of detailed product information on publicly accessible websites such
as Softpedia and then uses this data to learn association rules and to construct a
recommendation system capable of recommending domain-specific features for a
product. Both applications leverage growing trends towards moving the require-
ments process online through adopting social networking tools.

17.2 Recommendation Systems in Requirements Engineering

While a significant body of prior work has focused on making recommendations
to support more general software engineering tasks such as finding experts to help
with development tasks [37, 39, 40], keeping developers informed of stakeholders
working on related tasks [52], or supporting the build process [49], there has been
far less thought on how to utilize recommendation systems within the require-
ments discovery process. Felfernig et al. [24] presented a visionary perspective
of a “Recommendation and Decision Support System,” which would support
individual and group activities through recommending stakeholders for quality
reviews, prioritizing requirements, suggesting relevant requirements for a current
task, identifying dependencies among requirements, proposing changes that could
be made to a requirements artifact to maximize group agreement, and identifying
sets of requirements for a future release. In other words, they envisioned a system
that could assist in a wide array of tasks related to requirements engineering.

Similarly, Maalej and Thurimella [34] proposed a research agenda for rec-
ommendation systems in requirements engineering. They envisioned potential
uses of recommendation systems which included recommending traceability links,
relevant background information, artifacts that have changed, templates to use, past
rationale decisions, requirements from previous systems, vocabulary to use, people
to collaborate with, status of activities and artifacts, and priorities, among others.

In this chapter we focus on recommendation systems which have been actually
implemented and evaluated in the requirements engineering domain. We avoid
discussing systems which have the look-and-feel of a recommendation system, but
which are purely search based and therefore do not leverage the core concepts that
define a recommendation system. For example, in the requirements engineering
field, researchers have developed techniques for generating (or retrieving) trace
links between various artifacts, such as between requirements and source code, or
between requirements and regulatory codes [3, 15, 20, 29]. However, while the end
result is a ranked listing of candidate links, which may appear to take on the form of
a recommendation, to the large part these approaches leverage basic information
retrieval and machine learning techniques instead of the core recommendation
algorithms that are the focus of this book.

Another interesting application of a recommendation system was proposed by
Lim et al. [32, 33]. They developed a tool called StakeNet, which used social
networking techniques to generate recommendations of project stakeholders. Based
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upon an early definition of the project, they identified an initial set of stakeholder
roles and associated stakeholders. They then utilized their tool to invite each of
the identified stakeholders to recommend additional stakeholders and to provide
a salience measure that captures the influence, legitimacy, and urgency of the
recommendation. Finally they used social networking metrics to prioritize candidate
stakeholders for inclusion in the project. StakeNet is unique in the way it generates
recommendations. Unlike other systems, StakeNet elicits recommendations directly
from users and then filters them using social network metrics. It is these filtered
recommendations which are presented to the users.

17.3 Recommendation Systems in Online Forums

Wikis and forums provide community-based portals that support collaborative
tasks and knowledge management activities. There are many benefits in using
online forums to support requirements discovery. For example, forums create a
broadly inclusive environment in which geographically distributed stakeholders
can collaborate asynchronously in a virtual meeting place to explore, discuss, and
specify requirements [21,47,48]. Noll [41] observed that almost all the requirements
for Firefox 2.0 were discovered through online forums, wikis, and bug tracking
systems. Christley and Madey [14] also pointed out that many activities that take
place in open source development are supported by online forums. Laurent and
Cleland-Huang [31] explored the way vendor-led open source projects conducted
requirements engineering tasks using online forums. They found forums to be very
effective for including large numbers of stakeholders; however, they also found that
the sheer mass of data collected in the forums created a number of challenges. For
example, it was often difficult for new users to find relevant discussion threads.
Similarly, project managers found it difficult to extract and manage feature requests
from within the forums, in order to identify specific stakeholder roles, and to
understand and document feature priorities.

To better understand the challenges of using social networking tools for require-
ments elicitation, we analyzed discussion threads and topics in the forums of several
open source projects and found a high percentage of discussion threads consisting
of only one or two feature requests. For example, as shown in Fig. 17.1, 59 %
of Poseidon threads, 48 % of Open Bravo threads, and 42 % of Zimbra threads
included only one or two posts [16]. The presence of so many small threads suggests
either that a significant number of distinct discussion topics exist or that users
tend to initiate redundant threads without first searching for related discussions.
This phenomenon hinders the overarching goal of the forum, which is to emerge
project requirements by facilitating topic-based discussions between stakeholders
with similar interests. Without some sort of structuring and support, online forums
tend to degenerate into question and answer style venues or, even worse, to contain
large numbers of posts which lack any response or related discussion. These
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Fig. 17.1 Discussion thread sizes. Forums are characterized by numerous small threads and a
couple of very large threads

problems create a rich opportunity for utilizing recommendation systems to improve
stakeholder collaboration.

The idea of utilizing recommendation systems in online forums is certainly
not new. Spertus et al. [50] developed a system for recommending user-created
discussion groups in the Orkut social networking site. They used a collaborative
filtering approach based on the k-nearest neighbors (kNN) strategy and compared
multiple similarity metrics. Chen et al. [12] also recommended communities in the
Orkut social networking site, but their approach differed from Spertus et al. in
that they used multiple input sources: users’ community memberships and users’
textual contributions. Freyne et al. [26] explored the effect that generating early
personalized recommendations had on social networking sites. In their work they
generated two kinds of recommendations: recommending people to be added to
a social network and recommending enhancements to a person’s profile. They
found that the users who received early recommendations became more engaged
in the social network. Guy et al. [27] explored the recommendation of “social
software items” within a social networking site. The recommended items included
webpages, blog entries, wiki pages, and user communities. They experimented
on moving beyond the concept of user similarity, to the idea of user familiarity,
where neighborhoods were created using the user’s social network. They discovered
that familiarity worked better, and that it provided richer explanations for the
recommendations.

17.3.1 Recommending Topics

Recommendation systems can be used to help manage the requirements process
in online forums. For example, they can be used to address the problem in which
stakeholders with similar interests fail to “find each other" in the forum, meaning
that topic discussions are dispersed across multiple threads, preventing full and
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Fig. 17.2 OPCI: Organizer and promoter of collaborative ideas

rigorous exploration of specific issues. In addition, recommendation systems can
be used to address the problem of unexplored topics by recommending expert
stakeholders for a topic.

As an example, consider the recommendation system OPCI (Organizer and Pro-
moter of Collaborative Ideas) [5, 7–10]. OPCI provides support for recommending
stakeholders and topics and optional support for managing the actual discussion
threads. If thread management is used, then OPCI proactively helps to maintain a
more cohesive set of discussion topics. New posts are analyzed in order to determine
if one or more existing and relevant discussion threads already exist. If so, OPCI
presents these threads to the user so that they have the option of posting their feature
request or comment to one of the existing threads. Furthermore, OPCI also monitors
discussions in existing threads, determines when the discussion diverges into a new
topic, and makes appropriate suggestions for spawning new threads. We do not
elaborate on these features of OPCI further, as they are not central to the application
of recommendation systems in a requirements forum. The recommendation systems
described in the remainder of this section can be applied to either user-defined or
automatically clustered discussion threads.

It is interesting to note that a discussion topic represents both a clustering of
feature requests and a grouping of stakeholders. In the remainder of this chapter
we refer to a topic and discussion thread synonymously. The general process is
summarized in Fig. 17.2 which shows that OPCI assumes stakeholders’ needs are
collected in a web-based tool such as a wiki, forum, or bug tracker. The feature
requests are then placed into discussion threads either by the users themselves or
by a tool such as OPCI. A variety of recommendation algorithms are then used to
generate recommendations to project stakeholders, thereby enhancing the quality of
the online requirements discovery process.

OPCI uses both content-based and collaborative-based recommendation systems.
The content-based recommendation utilizes the content of the discussion threads
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to initially recommend similar topics to a stakeholder while the collaborative rec-
ommendation creates additional recommendations by identifying stakeholders with
similar interests, and then using these similarities to generate recommendations.
Content-based recommendation systems, which are particularly useful for keeping
similar feature requests collocated in a single thread, are discussed in more detail
later in the chapter. In the following section we focus on describing the use of
collaborative recommendations. These serve the important role of cross-pollinating
discussions with contributions from stakeholders with related concerns.

17.3.2 Creating User Profiles

A basic introduction to collaborative recommendation algorithms is provided
by Menzies [36] in Chap. 3. The standard kNN-based algorithm with Pearson
correlation assumes that each entry in the user profile represents the degree of
interest that a user has in a particular item to be recommended.

In order to create a forum-based recommendation system, we construct a user-by-
discussion-thread matrix R which captures the interest each user has in a particular
discussion topic. There are two primary ways to represent this matrix. The first
approach represents the degree of interest a user has in each topic, by depicting the
number of posts a user has in a thread, and also the extent to which those posts
represent core concepts of the thread, i.e., the similarity between the user’s posts
and the central theme of the thread. This results in a matrix R containing a set of
continuous values [10].

Alternately, a binary matrix R can be used, in which a membership score of 1
means that the user has engaged in the discussion thread while a score of 0 means
that they have not. However, we cannot assume that a score of 0 means that the user
is not interested in the topic.

Switching to a binary representation of the R matrix requires a few additional
changes to the similarity and prediction formulas of kNN, mainly because the
concept of average ratings does not make sense in a binary profile. There are several
binary similarity metrics available [50]; one of the most accepted formulas is the
binary equivalent of the cosine similarity metric (cos0), defined in Eq. (17.1).

cos0.ua; ub/ WD jRua \Rub jpjRua j � jRub j
; (17.1)

where Ru is the set of rated items of user u; more specifically, the membership (yes
or no) of the user in the discussion threads.

Equation (17.2) has been shown to consistently return good recommendations.

Or 0u;i WD
P

n2nbr.u/ userSim.u; n/ � rn;i
P

n2nbr.u/ userSim.u; n/
(17.2)
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Table 17.1 Characteristics
of the main datasets Dataset # Threads # Posts # Users

Second Life 50 3392 2120
Student 29 223 36

Sugar CRM 60 885 523
Railway 55 1652 132

17.3.3 Profile Augmentation with Requirements Metadata

In addition to using a binary profile, major improvements can also be achieved
[7] by augmenting the user profiles with additional known attributes about the
users. This metadata can be incorporated into the ratings matrix, such that R D
.ru;i /jU j�.jAjCjI j/, where the first A columns indicate that a user has an interest in
a known attribute a of the domain. This approach is feasible in the requirements
engineering domain, where the role of specific stakeholders is often known or easily
elicited. Examples of user attributes include the roles of the users in the project (e.g.,
a developer or project manager), their interest in system qualities (e.g., security
or usability), or their interest in key functionalities or modules (e.g., calendaring
functionality or payroll module). These additional attributes can be used to augment
the user profile and to generate the neighborhoods of similar users.

17.3.4 Evaluation

One of the common ways to evaluate a recommendation system is based on
the standard leave-one-out cross-validation experimental design. In this style of
experiment, we systematically remove one known interest for each user and
then evaluate the recommendation system’s ability to successfully recommend
it back. To illustrate the effectiveness of the three variants of recommendation
systems discussed in previous sections, we present experimental results achieved
by generating recommendations using the datasets described in Table 17.1.

“Second Life” is an Internet-based virtual world game in which users create
avatars to explore, and interact in, a “virtual world." “Student” is a small dataset of
feature requests and user interests created by 36 graduate level students at DePaul
University for an Amazon-like student web portal where the students could buy
and sell books. “Sugar CRM” is an open source customer relationship management
system that supports campaign management, email marketing, lead management,
marketing analysis, forecasting, quote management, case management, and many
other features. Finally, “Railway” is a dataset of requirements and stakeholder
roles mined from the public specifications of two large-scale railway systems, the
Canadian Rail Operating Rules and the Standard Code of Operating rules published
by the Association of American Railroads.

Results from four kNN-based variants are shown in the hit ratio graph depicted in
Fig. 17.3 [7]. A hit ratio graph is particularly useful for evaluating a recommendation
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Fig. 17.3 Collaborative recommendation results using standard, binary kNN, and the augmented
profiles on four datasets. (a) Student dataset. (b) Railway dataset. (c) Sugar dataset. (d) SecondLife
dataset

system when the results are presented as a ranked list. Hit ratio curves plot
the accumulated percentage of correctly retrieved results against the number of
recommendations made. In other words, for the items that were recommended back,
it shows how many were ranked as the first item shown to the user, how many
were ranked as the second item, and so on. This is typically plotted in a graph and
compared against a random recommendation (represented as a diagonal line). The
ideal hit ratio graph for a good recommendation will show a sharp improvement over
the random case for the early recommendations, indicating that those were indeed
items that the user had an interest in.

In this application, binary recommendations tend to outperform the non-binary
approach. Furthermore, adding additional information also significantly improves
the quality of the generated recommendations, primarily because the additional
knowledge increases the density of information in the users’ profiles, making the
selection of neighbors more reliable.

17.4 Recommending Expert Stakeholders

In addition to using recommendation systems to help stakeholders find relevant
discussion threads, recommendations can be made at the project level to identify
stakeholders with expertise in specific areas. These recommendations address the
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commonly occurring problem of unanswered posts. In most open source projects,
a significant percentage of posts never receive responses. From a requirements
elicitation perspective, this suggests that certain ideas go unexplored and represents
lost opportunities for truly understanding and meeting the users’ needs.

The same recommendation algorithms, described in the previous sections, can be
used to identify three groups of stakeholders [5, 6]:

Direct Stakeholders. Represent users who have directly contributed ideas to the
topic. In other words, these are the users whose posts have been clustered together
into a topic.

Indirect Stakeholders. Represent users who have contributed ideas to related
topics. These stakeholders are discovered through measuring the similarity
between the topics (clusters), and selecting users who have posted to closely
related discussion threads.

Inferred Stakeholders. Represent users who have exhibited patterns of interest
which suggest that they could potentially be interested in the topic. These users
are found by a collaborative recommendation, the same binary kNN described in
Eqs. (17.1) and (17.2).

While different approaches are possible, it can be particularly effective to use
a hybrid recommendation system to identify and recommend expert stakeholders.
In the hybrid approach, the text of the unanswered posts is first analyzed and
then a content-based recommendation system is used to recommend users that
contributed posts with similar content. This is achieved by clustering posts and then
identifying stakeholders whose posts are placed in the same cluster (i.e., topic) as
the unanswered post. The identified stakeholders are then used as the input to a
collaborative recommendation algorithm so that additional users, who might be able
to respond to the post, are identified. For this, the binary kNN algorithm described
in Sect. 17.3.2 can be used.

The effectiveness of the hybrid recommendation system is illustrated through an
experiment that simulates unanswered posts by examining each discussion thread
in turn, identifying the first post of the thread, temporarily removing all other posts,
and then running the hybrid recommendation to see if the authors (stakeholders) of
the removed responses could be identified and recommended back.

Table 17.2 and Fig. 17.4 show the results of this experiment in terms of precision,
recall, F2 measure, and hit ratio graphs (for the collaborative part), compared to
a random recommendation. There are several interesting observations. First, the
content recommendation returns fairly good precision, recall, and F2 values and
clearly outperforms the random recommender. Second, the collaborative recom-
mender outperforms the content-based recommender in terms of recall but achieves
low precision. This is explained by the fact that the collaborative recommendation
system outputs a much larger list of suggested users. Because a human user is not
interested in so many recommendations, it is important to evaluate the ranking
of the recommended users. This is depicted in the hit ratio graphs in Fig. 17.4,
which show that the correct users tend to be returned before the incorrect ones.
Furthermore, there is a limit to the number of users who can be identified through
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Table 17.2 Performance of the recommendation of relevant users in terms of precision, recall,
and F2-measure for six open source forums

noitadnemmocerdesaBevitaroballoCnoitadnemmocerdesaBtnetnoC

modnaRdevresbOmodnaRdevresbOtesataD

Prec. Recall F2 Prec. Recall F2 Prec. Recall F2 Prec. Recall F2

7-Zip 39.11% 48.14% 0.46 1.55% 1.90% 0.02 3.16% 71.77% 0.13 0.81% 18.36% 0.03
Alliance P2P 9.53% 27.01% 0.20 0.62% 1.77% 0.01 2.19% 42.13% 0.09 0.46% 8.78% 0.02

KeePass 23.87% 42.93% 0.37 1.20% 2.15% 0.02 3.50% 75.51% 0.15 0.69% 14.83% 0.03
MiKTeX 15.60% 26.27% 0.23 1.11% 1.86% 0.02 4.15% 78.11% 0.17 0.82% 15.39% 0.03

Notepad++ 20.50% 37.14% 0.32 0.80% 1.45% 0.01 2.60% 70.61% 0.11 0.50% 13.68% 0.02
phpMyAdmin 23.15% 49.04% 0.40 0.79% 1.69% 0.01 5.69% 76.45% 0.22 0.41% 5.46% 0.02
RSS Bandit 13.79% 14.29% 0.14 2.23% 2.31% 0.02 13.89% 10.42% 0.11 1.92% 1.44% 0.02
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Fig. 17.4 Performance of the recommender of relevant users in terms of hit ratio for six open
source forums. (a) 7-Zip. (b) Alliance. (c) KeyPass. (d) NotePad++. (e) PHP My Admin. (f) RSS
Bandit

collaborative recommendations (shown as the gap between the two lines in the hit
ratio graph at the maximum number of recommendations). This occurs because the
collaborative recommendation was constrained to only make recommendations to
users who belonged to at least three discussion threads. This restriction ensures the
quality of the recommendations but also highlights the problem that we are trying
to address: the fact that some users create a post that never gets answered and as a
result stop participating in the open source project. A more detailed explanation of
these experiments and results can be found in the related work of Castro-Herrera [5].

17.5 Feature Recommendation

The second type of recommendation system we explore in this chapter is designed
for use in the domain analysis process [19]. Domain analysis is conducted in
early phases of a project and involves analyzing existing software systems from
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the same domain in order to better understand their common and variable parts.
Domain analysis supports requirements discovery processes by identifying features
commonly included in software products operating in a specific domain.

Domain analysis techniques require analysts to review documentation from
existing systems in order to manually, or semi-manually, extract, organize, and
model features in the domain. For example, the Domain Analysis and Reuse
Environment (DARE) [25] uses semiautomated tools to extract domain vocabulary
from text sources and then identifies common domain entities, functions, and
objects, by clustering around related words and phrases. Chen et al. [11] man-
ually constructed requirements relationship graphs (RRGs) from several different
requirements specifications and then used clustering techniques to merge them into
a single domain tree. Alves et al. [2] utilized the vector space model (VSM) and
latent semantic analysis (LSA) to determine the similarity between requirements
and generate an association matrix which is then clustered. A merging step is
then executed to create the entire domain feature model. The primary limitations
of these approaches are their reliance upon existing requirements specifications
and the constraints associated with mining features from only a small handful of
specifications. All of these techniques have one thing in common, which is the
need for an existing set of requirements specifications. As requirements represent
closely guarded intellectual property, these domain analysis techniques are often
only available to organizations with existing products in the targeted domain.

On the other hand, the advent of online product repositories means that partial
descriptions of hundreds of thousands of products are now available in the public
domain. These product descriptions can be used in place of actual requirements to
construct a recommendation system. In this section we explain how hundreds of
thousands of partial product descriptions can be used to learn association rules and
generate feature recommendations.

The approach utilizes data mining and machine learning methods to mine soft-
ware features from online software product repositories and to infer relationships
among those features. The inferred affinities are then used to train a recommender
system which generates feature recommendations for a given project.

Figure 17.5 represents the overall process, consisting of an initial training phase
followed by a usage phase. In the training phase, features are extracted from online
product descriptions and the feature recommender is trained, while in the usage
phase, the trained system makes recommendations based on an initial description of
the product provided by a requirements analyst or other users of the system.

The training phase involves mining product specifications from online software
product repositories. For example, feature descriptors could be retrieved from
Softpedia which contains a large collection of software products. In the second step,
the raw feature descriptors are fed to a clustering algorithm which groups them into
features and generates an appropriate name for each feature. Finally, in the third
step, a product-by-feature matrix and a feature itemset graph (FIG) based on the
relationships between products and the mined features are both constructed.

The trained recommender system can be used to generate recommendations
based on an initial textual description of the product provided by the requirements

http://www.softpedia.com/
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Fig. 17.5 Feature extraction and recommendation

or domain analyst. Basic information retrieval methods are used to match this
description to a set of related features in the product-by-feature matrix. These
features are presented to the user for confirmation. The quality of the final
recommendations can be improved through utilizing a two-phase process. In the
first phase, association rule mining, as discussed by Menzies [36] in Chap. 3, is
used to augment the initial product profile. This is particularly effective given
that we have found that association rules tend to produce relatively accurate, but
incomplete recommendations. Finally, the augmented profile is used in a standard
kNN approach to generate an additional set of feature recommendations. As we will
later show, recommendations produced from the association rule recommender are
usually complementary to the features recommended by the kNN recommender,
and furthermore, augmenting the initial sparse product profile helps the kNN
recommender to produce more accurate recommendations.

Figure 17.6 illustrates a feature recommendation scenario for an anti-virus
product. An initial product description is first mapped to four features in the recom-
mender’s knowledge base related to spam detection, disk scans, virus definitions,
and virus databases, which serve as seeds for generating feature recommendations.
The product profile is then augmented by association rule mining with recom-
mended features such as network intrusion detection and real-time file monitoring.
Finally (although not shown in the figure), the kNN recommender system makes an
additional set of recommendations.

17.5.1 Feature Mining

Features must initially be mined from product specifications. For the examples
presented in this chapter, we utilized 117,265 different products from 21 Softpedia
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Step # 1: Enter ini�al product descrip�on
The product will protect the computer from viruses and email spam.  It will 
maintain a database of known viruses and will retrieve updated descriptions 
from a server.  It will scan the computer on demand for viruses.

Step # 2: Confirm features
We have identified the following features from your initial product 
description.   Please confirm :

Email spam detection
Virus definition update and automatic update supported
Disk scan for finding malware
Internal database to detect known viruses

Step # 3: Recommend features
Based on the features you have already selected we recommend the 
following three features.  Please confirm:

Network intrusion detection   Why?

Real time file monitoring    Why?

Web history and cookies management  Why?

Click here for more recommenda�ons

We notice that you appear to be developing an Anti-virus software system.  
Would you like to browse the feature model?

View Feature Model

Fig. 17.6 An example usage scenario

categories. Product descriptions are parsed into sentences to form feature descrip-
tors and then preprocessed using standard information retrieval techniques such as
stemming and stop-word removal. Each feature descriptor is then transformed into
a vector space representation using the TF–IDF approach.

As many products contain similar features, and these features are described in
slightly different ways, the descriptors must be clustered into coherent clusters such
that each cluster corresponds to a software feature.

The similarity of a pair of feature descriptors can be measured by computing the
cosine similarity of their corresponding TF–IDF vectors. This similarity measure
can be used by any conventional clustering algorithm such as K-means [35], K-
medoid [35], or spherical K-means [22] to group similar feature descriptors. In our
system we used the incremental diffusive clustering (IDC) approach [23] to group
the feature descriptors into 1,135 clusters. This algorithm uses a heuristic approach
to determine the number of clusters. Based on our previous studies, this algorithm
tends to outperform other algorithms, including K-means, spherical K-means, and
latent Dirichlet allocation (LDA) [4] for clustering requirements [28].

It is important to present a comprehensible recommendation to the user. To this
end, each feature needs to be meaningfully named. One approach uses the medoid as
the name. The medoid is defined as the descriptor that is most representative of the
feature’s theme. The medoid is identified by first computing the cosine similarity
between each descriptor and the centroid of the cluster and then summing up the
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different weighted values in the descriptor’s term vector for all values above a
certain threshold (0.1). Both scores are normalized and then added together for each
descriptor. The descriptor scoring the highest value is selected as the feature name.
This approach produces quite meaningful names. As an example, a feature based
on the theme of updat, databas, automat, viru might subsequently be named Virus
definition update and automatic update supported.

17.5.2 Feature Recommendation Algorithm

The goal of the feature recommendation module is to provide recommendations
for a project with a given set of initial features. The feature recommender can be
trained by creating a binary product-by-feature matrix, M WD .mi;j /P�F , where P

represents the number of products (117,265), F is the number of identified features
(1,135), and mi;j is 1 if and only if the feature j includes a descriptor originally
mined from the product i . Having this matrix, various collaborative filtering
methods, including neighborhood-based techniques such as user-based kNN and
item-based kNN as well as matrix factorization approaches such as BPRMF [43],
can be exploited to produce recommendations. For a new product p with a set of
features Fp , the recommendation algorithm computes a recommendation score for
each of the features which are not in Fp and presents to the users the top N (where
N is the number of recommendations) features with the highest recommendation
scores.

To compare different recommendation algorithms, we describe the results of
applying a fivefold cross-validation experiment [44]. For each product p in the
test data, L D 3 features are randomly selected and used to represent the product
profile. One of the remaining features, ft , is randomly selected as the target feature,
and each recommendation algorithm is evaluated based on its predictive power in
recommending the target feature.

Hit ratio results for three algorithms at different sizes of recommendations are
shown in Fig. 17.7. As can be seen, although BPRMF returns good performance
when N > 45, it does not perform well at higher ranks. Assuming that the user
is likely to look at the first ten recommendations, user-base kNN returns the best
performance in comparison with the other two methods.

17.5.3 Addressing the Cold Start Problem

One of the problems frequently experienced with typical recommender systems,
including systems based on collaborative filtering, is the product cold start problem
which occurs when not enough is known about a product to make useful personal-
ized recommendations. This situation can typically arise when the user’s description
of a product matches very few features in the database. This makes it difficult to find
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Fig. 17.7 Hit ratio comparison of different recommendation algorithms

a good neighborhood for the product, and as this neighborhood is the basis for the
prediction of item scores, the recommendations accuracy is negatively affected. The
solution to this problem usually involves a form of bootstrapping to enrich the initial
product profiles. In the feature recommendation system, association rule mining
can be used to enhance the initial product profile and then the discovered rules can
be integrated into a hybrid recommendation framework using the kNN. Given an
initial small profile for a target product, a preliminary set of recommendations are
generated through association rule mining. These features are then shown to the
user, and those accepted by the user are added to the product profile. The standard
kNN approach is then applied on this augmented profile to generate additional
recommendations.

Association rule mining is described in more detail by Menzies [36] in Chap. 3.
Association rules identify groups of items based on patterns of co-occurrence
across transactions. In this context each product is viewed as a “transaction,” and
association rules are generated among sets of features that commonly occur together
among a significant number of products. The sets of features that satisfy a predefined
support threshold are generally referred to as frequent item sets; however, in the
context of domain analysis we refer to them as frequent feature sets.

Association rules are used to address the cold-start problem by augmenting an
initially sparse profile. When a partial profile is matched against the antecedent of
a discovered rule, the items on the right-hand side of the matching rules are sorted
according to the confidence values for the rule, and the top ranked items from this
list form the recommendation set. In order to reduce the search time, the frequent
item sets can be stored in a directed acyclic graph, called a frequent itemset graph
(FIG) [38, 46].

The graph is organized into levels from 0 to k, where k is the maximum
size among all discovered frequent item sets. Each node at depth d in the graph
corresponds to a frequent item set I of size d and is linked to item sets of size dC1

that contain I at the next level. The root node at level 0 corresponds to the empty
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ROOT

NPRSSPED DSSQAD

NP, DSNP, SPNP, ED NP, SQNP, DF

NP, DS, SQNP, DS, DFNP, DS, ED NP, DS, SP

NP, DS, DF, SQNP, DS, ED, DF NP, DS, SQ, DF

0.784 0.666 0.941 0.764 0.674

0.791 0.770 0.645 0.666

0.789 0.810 0.783 0.935

AD Ac�ve detec�on of search query results
DS Disc scan for finding malware
ED email detec�on

SP Spyware Protec�on
SQ Search Queries

Fig. 17.8 A subset of a frequent itemset graph for the Network Intrusion Protection augmented
with confidence scores

items set. Each node also stores the support value of the corresponding frequent
item set.

Given an initial profile comprised of a set of features f , the algorithm performs
a depth-first search of the graph to level jf j. Each candidate recommendation r is
a feature contained in a frequent itemset f [ frg at level jf C 1j. For each such
child node of f , the feature r is added to the recommendation set if the support
ratio �.f [ frg/=�ff g, which is the confidence of the association rule f ) frg,
is greater than or equal to a pre-specified minimum confidence threshold. This
process is repeated for each subset of the initial itemset f , and conflicting candidate
recommendations are resolved by retaining the highest confidence values. The
recommended features corresponding to rules with highest confidence are shown
to the user, and those accepted by the user are added to the product profile.

Figure 17.8 shows a small subset of frequent feature sets mined from the anti-
virus software features. The displayed itemset graph shows features associated with
network intrusion detection. For example, one rule specified in this graph states that
if network intrusion detection (NP) and disk scan for finding malware (DS) features
are found in a product, then we have a confidence of 0.791 that the product will also
contain an email detection feature.

The effect of association rule mining on the performance of the system
can be shown experimentally. For illustrative purposes we conducted a fivefold
cross-validation experiment. In each of the five runs, one of the folds served as a
testing set while the frequent itemset graph was generated from the remaining folds.
For each product in the test set, L D 3 features were selected and the remaining
features are removed from the profile. The frequent itemset graph was then used to
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Fig. 17.9 Precision and recall at different levels of confidence

generate recommendations, and those recommendations with confidence scores of
0.2 or higher were recommended to the user. The produced recommendations can
be evaluated in terms of precision and coverage, where precision is defined as the
fraction of recommended items that are originally part of the product profile, and
coverage as the fraction of profiles which receives recommendations.

Figure 17.9 shows the precision and recall for different levels of confidence.
For example, at a confidence level of 0.2, the precision of the generated recom-
mendations is 25 % and recall is 37 %. The association rule approach can therefore
achieve high precision in its recommendations, but at the cost of lower recall. These
observations support our earlier claims that association rule mining can be useful for
identifying a small set of previously unused features with a high degree of precision.

To simulate the step in which the user evaluates the initial recommendations,
the correct recommendations can be automatically accepted, and the incorrect ones
rejected based on the known data stored in the product-by-feature matrix. These
accepted recommendations are then used to augment the initial product profile of
size L D 3, and the augmented profile is given as input to the kNN recommender to
generate more recommendations. We label this hybrid method as kNNC.

The hybrid recommender can also be evaluated using the cross validation
experiment, with the small modification that the left-out item is selected from the
set of features that are not part of the augmented profile. Figure 17.10 compares the
hit ratio results of the user-based kNN approach with the kNNC method. As can
be seen, the quality of recommendations is significantly improved when association
rules are used to augment the product profile before running the kNN algorithm.
This difference represents a 0.1 improvement in hit ratio at rank of 20.

These results demonstrate the viability of using recommendation systems to
recommend features during the domain analysis process.
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Fig. 17.10 Comparison of hit ratio for the hybrid method and the user-based kNN

17.6 Conclusion

In this chapter we have highlighted two specific applications of recommendation
system in the requirements engineering domain. However, as pointed out earlier
by Felfernig et al. [24] and Maalej and Thurimella [34] the potential exists for a
far broader set of applications. The requirements engineering process has many of
the characteristics of fields in which recommendation system technology has had
significant impact. Its people-intensive upfront activities, and large quantities of
data in the form of formal requirements, feature requests, and other very informal
discussion posts, create an environment which can clearly benefit from social media
tools such as recommendation systems. As such, the two in-depth examples we have
described in this chapter serve as a proof of concept for the potential that exists to use
recommendation systems to support a wide range of requirements-related activities
in the future.
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Chapter 18
Changes, Evolution, and Bugs

Recommendation Systems for Issue Management

Markus Borg and Per Runeson

Abstract Changes in evolving software systems are often managed using an
issue repository. This repository may contribute to information overload in an
organization, but it may also help in navigating the software system. Software
developers spend much effort on issue triage, a task in which the mere number of
issue reports becomes a significant challenge. One specific difficulty is to determine
whether a newly submitted issue report is a duplicate of an issue previously reported,
if it contains complementary information related to a known issue, or if the issue
report addresses something that has not been observed before. However, the large
number of issue reports may also be used to help a developer to navigate the software
development project to find related software artifacts, required both to understand
the issue itself, and to analyze the impact of a possible issue resolution. This
chapter presents recommendation systems that use information in issue repositories
to support these two challenges, by supporting either duplicate detection of issue
reports or navigation of artifacts in evolving software systems.

18.1 Introduction

As software systems evolve, modifications due to discovered defects or new feature
requests are inevitable. Typically, projects manage change requests and defect
reports in issue repositories [21, 43, 50]. In large software engineering projects,
the number of issue reports reaches several thousands and challenges engineers’
ability to overview the content [4, 23]. Also, distributed development—in terms of
both geographical and organizational distances—intensifies the need for efficient
management of archived issue reports. Further, issue reports can constitute junctures
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for several other software artifacts, with pointers to, for example, requirements, test
cases, and code components that are involved in the resolution of the issue.

The relationships between issue reports and other software artifacts implies
challenges in managing the large amount of information. On the other hand, it also
brings opportunities in using the link information to support software developers in
their tasks. Networks of software artifacts can be an actionable input to a system
recommending related information for the task at hand. With proper tool support,
archived issue reports can be harnessed to support developers in tasks such as issue
triage and change impact analysis.

Issue management in software engineering is similar to task management in
general, for example, in a service organization. Issue reports are similar to the
baton in a relay race: different actors (e.g., developers, testers, quality assurance,
customers) contribute to solving the task, and the issue management system is the
central node that dispatches subtasks to the actors. Issue reports may originate from
several sources, within the development organization or from outside customers or
sub-contractors. Issues may be pure defect reports, but may also contain change
requests and proposals.

An issue repository is typically a database where issue reports (i.e., defect reports
and change requests) are stored and maintained over time [21, 43]. The Bugzilla
open source issue repository [38] is probably the best known, although several open
source and proprietary alternatives exist. Existing issue repositories have features
for storing and dispatching issue reports to actors as well as statistical functionality
for management reporting. In Chap. 6, Herzig and Zeller [19] elaborate further on
issue management.

To support the management and resolution of issues in software development,
recommendation systems in software engineering (RSSEs) have been proposed.
Figure 18.1 shows the two basic approaches to RSSEs, content-based filtering and
collaborative filtering, in the context of issue reports. In an RSSE based on content-
based filtering, each issue is represented by a set of features. In previous work,
issues have typically been represented by textual features, that is, the terms in
their descriptions. Apart from the textual content of the issue reports, issues can
be represented by features such as severity, submission date, responsible developer,
impacted source code, etc. [35]. The RSSE then compares the features of the given
issue to all other issues in the issue repository to recommend the most similar issues.
Section 18.2 presents several examples of how RSSEs have been used to recommend
duplicate issue reports, as well as results from empirical evaluations.

Collaborative filtering, on the other hand, relies on a crowd of developers in
the organization. In a narrow sense, algorithms for collaborative filtering identify
users with similar preferences to produce recommendations for the information
seeker [48]. In an RSSE for issues, this would mean matching the profile of
the information seeker with the other developers. When the peers most similar to the
information-seeking developer have been identified, the RSSE can recommend the
issues with which these peers most often interact. The user profiles could be based
on either previous interaction with issue reports or by features such as role, team,
location, etc. (further discussed by Ying and Robillard [51] in Chap. 8).
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Fig. 18.1 Main principles of an RSSE for issues, content-based and collaborative filtering.
The two approaches can also be combined in a hybrid system

In a wider sense, collaborative filtering can be used to refer to all social recom-
mendation systems. One approach is to reuse the “trails” in the software engineering
information landscape, that is, following in the footsteps of previous work. This
type of collaborative RSSE identifies patterns in data, produced by developers as
part of their normal work tasks. This approach can also be referred to as social data
mining [48]. The idea is to aggregate the decisions from previous work and make it
explicit, with the purpose to support future decision making. Section 18.3 presents
two applications of this approach related to navigation from issue reports to other
artifacts during software evolution.

18.2 Supporting Issue Triage Using RSSEs

Issue triage—analyzing a new issue report and deciding how to react to it—requires
a lot of effort in large software projects [11]. Questions that are typically asked
include: Has this issue been reported before? Should this issue be fixed? Who should
fix this issue? Where should this issue be fixed? When debugging large software
systems, answering the last question is easier if the developer is aware of all relevant
reported pieces of information; thus, similar issue reports are also of interest.

Software engineering research has addressed several aspects of issue triaging.
Examples include work by Guo et al. [18] on predicting which reported issues
get fixed at Microsoft. Based on this information, developers could more easily
prioritize issues during triage, for example, to decide which bugs should be closed
or migrated to future product versions. A related but more specific consideration is
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how long it will take to resolve a given issue. Both Weiss et al. [50] and Raja [37]
report that using the average resolution time of textually similar issue reports can be
used as an early estimate for newly submitted issues.

Several researchers focused on assessing the severity of issue reports. Menzies
and Marcus [31] developed a tool that alerts developers when the manually assigned
severity is anomalous. Lamkanfi et al. [27] report promising results from automated
severity assignments in a study on three issue repositories used in development of
open source systems (OSSes). Another approach to identify severe issue reports was
presented by Gegick et al. [16]: with a research focus on security-critical software
development, they successfully identified about 80 % of the reported issues related
to security on a large software system from Cisco.

Another challenge in large software engineering projects is to assign issue reports
to the most appropriate developer [11], to reduce resolution times and minimize
reassignment of bug reports also known as “bug tossing”. Anvik and Murphy [2]
trained a classifier to automatically assign incoming issue reports to developers and
reported promising results on five OSS projects. Jonsson et al. [22] did similar work
and evaluated their prototype on a large proprietary system at Ericsson, reporting
performance comparable to manual assignment by human experts.

The rest of this section presents work on duplicate detection of issue reports
to aid issue triage. When searching for related or duplicate issue reports, part of the
problem lies in defining what counts as a duplicate. Duplicates can be categorized as
either those that describe the same failure and those that describe two different fail-
ures with the same underlying fault [40]. These two kinds are inherently different in
that the former type, which describes the same failure, generally uses similar vocab-
ulary. The latter type, on the other hand, which describes two failures stemming
from the same fault, may use different vocabulary. RSSEs relying on content-based
filtering based on textual features are thus better suited for addressing duplicates
of the former type. In this section we refer to the first submitted issue report on a
specific fault as the master report, and subsequent reports as duplicate reports.

18.2.1 Duplicates: Burden or Asset?

During the lifecycle of large software systems, maintenance activities account for a
majority of the development costs [5]. In many software projects, the management
of the maintenance work revolves around issue reports in an issue repository.
However, the inflow of issue reports often requires significant effort to address them,
typically exceeding the available resources [20]. This challenge is further intensified
in open source projects, where the software users directly report issues to an open
issue repository. Anvik et al. [1] highlighted the continuous inflow of new issue
reports in the Mozilla community as challenging already in 2005, when the average
number of daily submitted issue reports was about 300.

One reason for the daunting inflow of issue reports is that the same issues
are reported in multiple reports. Previous studies have shown that the number of
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duplicate issue reports in issue repositories can be considerable. Sureka and Jalote
[47] report that 13 % of the issue reports in the Eclipse project (among 205,242
issue reports) were duplicates, while Anvik et al. [1] studied an earlier stage of
the Eclipse project and found that the duplicate fraction in 2005 was 20 % (among
18,165 issue reports); they also studied the issue repository used in development of
Mozilla Firefox, observing that it contained 30 % duplicate reports (among 2,013
issue reports). Another study on Mozilla software, not restricted to Firefox, was
conducted by Jalbert and Weimer [20]. They observed that 26 % of the issue reports
were duplicates (among 29,000 issue reports). While a majority of studies on issue
management have addressed open source development, the challenge of duplicate
issue reports have also been reported from proprietary contexts. Runeson et al. [40]
showed that the phenomenon exists also at Sony Ericsson Mobile Communications
(SEMC), where practitioners acknowledged the extra effort caused by duplicates.
At SEMC, practitioners estimated that 10% of the issue reports were duplicates.

On the other hand, based on results from a survey on duplicate issue reports
among open source developers, Bettenburg et al. [4] present another view on the
matter. While a majority of the respondents had experienced duplicate reports, few
of them considered it to be a serious problem. On the contrary, the respondents
stressed that multiple issue reports related to the same issue often provide additional
information, thus decreasing resolution times. Furthermore, Bettenburg et al. present
empirical evidence confirming that additional information is present in duplicates,
in the context of the Eclipse project. Their findings show that duplicates are most
often submitted by other users, and that duplicates provide different perspectives
and additional information, for example, additional steps to reproduce the issue and
supplementary stack traces. Consequently, duplicate detection enables merging of
issue reports, a feature that can support bug triaging.

As already indicated, providing duplicate recommendations can be meaningful at
different points in time in a software development project. First, a tool can support
detection of duplicate issue reports on the submitter side. At submission time, only
the information entered by the submitter is available, typically limited to basic
system information and a natural language description of the observed software
behavior. As such, the tool can rely on content-based filtering using text retrieval
techniques to recommend the most similar issues reports among the ones already
existing in the issue repository. With this type of support, the submitter can decide
whether to (1) submit a new issue report, (2) add additional information to an already
open issue report, or (3) skip submitting the issue report if all information is already
available in the issue repository. Making the right decision at submission time has
the potential to speed up the issue triage on the developer side. On the other hand,
Runeson et al. [40] report that it might be hard to make authors of issue reports use
the tool in such ways. When people take the time to write a full issue report, they
will most likely submit it regardless of the outcome of a duplicate detection, as that
action requires the least effort.

Second, a tool can support an engineer on the receiving side of the issue reposi-
tory. When the developer first receives the issue report, again the only information
available is typically a natural language description of the issue and some basic
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Fig. 18.2 Overview of RSSEs for duplicate detection. The steps in the top track show an RSSE
based on the IR approach, while the bottom track displays a classification-based approach

system information. Thus, the same options regarding decision making based on
the output of a content-based filtering recommender is available. However, as the
developer probably is more knowledgeable than the submitter, the decision might
not be the same. Being aware of the duplicate status can be used both to avoid double
triaging, and to support issue resolution by aggregating all available information. In
an interview with developers on the receiving side, Runeson et al. [40] found support
for the feasibility of issue duplicate detection in a proprietary context.

18.2.2 RSSEs for Duplicate Detection

Current best practice on RSSEs for duplicate detection is based on content-based
filtering, and has reached a level of maturity to allow a transition to some well-
established software engineering tools. For instance, both HP Quality Center
and Bugzilla implement automatic comparisons between newly submitted issue
reports and previously reported issues, and this functionality is also used in the
marketing of both tools. Also SuggestiMate for JIRA offers this feature. Two general
approaches to duplicate detection based on content are used in RSSEs for duplicate
detection, either treating it as an information retrieval (IR) problem, or a classification
problem. Both approaches have mostly relied on analyzing the textual content
in the issue descriptions, thus they share several steps, as presented in Fig. 18.2.
However, while an indexed document space of issue reports is enough to deploy
an IR-based approach, a duplicate detector based on classification requires also
a classifier trained on an annotated subset of issue reports. This section presents
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some experiences from implementations of duplicate detection for issue reports,
and summarizes evaluation results and lessons learned.

The accuracy of a tool for duplicate detection can be evaluated in several ways.
The most commonly reported measure in the literature is average recall when
considering the top-k recommendations (recall at k), for example, how many of
the duplicates do I find within the top 1, 2, 3, . . . , 10 recommendations. As we
assume that each duplicate report has exactly one master report, recall at k shows
the fraction of duplicate reports with their corresponding master reports presented
among the top k recommendations [29]. Another possible perspective is to consider
sets of duplicate issue reports, that is, considering a network of issue reports
with undirected edges representing duplicates [8]. Since a majority of previous
work applies the first perspective, we use it as the basis for our discussions, more
specifically recall at 10.

18.2.3 Duplicate Detection as an IR Problem

The detection of duplicate issue reports can be treated as an IR problem, for exam-
ple, implementing classical algebraic IR models. IR is defined as “finding material
(usually documents) of an unstructured nature (usually text) that satisfies an
information need from within large collections (usually stored on computers)” [29].
Thus, IR deals with analyzing large collections to retrieve the most relevant to a
given information need. In the context of duplicate detection, this transforms into
“given this issue report, which other issue reports are most likely to be duplicates?”
The system then returns a ranked list of potential duplicates to the user of the tool.

As depicted in Fig. 18.2, an IR-based RSSE for duplicate detection implements
three main steps. The first step, after the issue reports are extracted from the issue
repository, is to preprocess their textual content. The most common preprocessing
steps are:

Normalization. Converting all text to lowercase. Removing special characters.
Pruning white spaces from the text, keeping only single whitespaces between
terms.

Stop Word Removal. Filtering out words that are not suitable as textual features,
as they appear in most texts. Examples of such words that capture no semantics
of an issue report include “the,” “is,” “at,” “and,” “one,” “which,” etc. Freely
available lists of stop words can be found on the web. Also, stop word functions
can be used in combination with lists, that is, a function that filters out all words
containing fewer characters than a given threshold.

Stemming. Reducing inflected words to their stem. This step addresses grammat-
ical variation such as conjugation of verbs and declension of nouns. Stemming
should reduce “crash,” “crashes,” and “crashing” to the same stem, converting
them to identical terms. In software engineering, Porter’s stemmer [36] is the
most commonly applied stemmer for English.
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Fig. 18.3 Duplicate detection based on the VSM. In the example, applying raw term weights and
cosine similarities, the two most similar issue reports are issue B and issue C

The second step in Fig. 18.2 depicts indexing the preprocessed issue reports.
RSSEs for duplicate detection typically consider the issue reports as a bag-of-words,
a simplifying assumption that represents a document as an unordered collection
of words. The standard technique is to apply the vector space model (VSM),
representing all issue reports as feature vectors of their contained terms [29]. All
terms after preprocessing are stored in a document–term matrix that represents each
issue report based on the frequencies of the terms contained in their respective
description. Thus, the VSM represents the issue reports in a high-dimensional space
where each term constitutes a dimension. An entry in the matrix denotes the weight
of a specific term in a given issue report. While term weights can be both binary
(i.e., existing or nonexisting) and raw (i.e., based on term frequency (TF)), usually
some variant of term frequency–inverse document frequency (TF–IDF) weighting
is applied. TF–IDF is used to weight a term based on the length of the document
and the frequency of the term, both in the document and in the entire document
collection. Further details on representing text using the VSM is presented by
Menzies [30] in Chap. 3.

When VSM is used for IR, document relevance is assumed to be correlated
with textual similarity. Thus, when looking for possible duplicates of a given issue
report, its similarities to all other indexed issue reports are calculated. When a
new issue report arrives, it must first be preprocessed and represented in the same
vector-space as was used for indexing the issue repository. The most common
similarity measure applied is the cosine similarity, calculated as the cosine of
the angle between feature vectors, as presented in Fig. 18.3. As no entries in the
document–term matrix are negative, the resulting similarity value is bounded
in Œ0; 1�. Furthermore, calculating cosine similarity is efficient in sparse high-
dimensional spaces as only nonzero dimensions need be considered. As presented as
the final step in the top track in Fig. 18.2, the most similar issue reports are retrieved
and used as recommendations.

Runeson et al. [40] were the first to propose extracting textual features from
issue reports and applying the VSM to find duplicates. They considered the textual
content in the title and description of the issue reports, and applied the standard
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preprocessing steps stop word removal and stemming. The resulting textual features
were then weighted according to TF D 1C log.frequency/ before the issue reports
were represented as feature vectors in the vector space.

Runeson et al. evaluated their system on data from Sony Ericsson Mobile
Communications, a large company where a software product line is used for
developing mobile phones. At the company, about 10 % of the issue reports were
signaled as duplicates. In this context, Runeson et al. evaluated their RSSE for
duplicate detection, and explored a number of variations of their system: (a) the
length of the stop word list; (b) adding a thesaurus to deal with synonyms in the issue
reports; (c) adding a spellchecker to auto-correct misspelled terms; (d) considering
the textual content of an additional field in the issue repository, that is, “project
name”; (e) up-weighting textual features in the title, to make them more important
than the content in the description; (f) different similarity measures (apart from
cosine similarities, also Dice’s coefficient and the Jaccard similarity coefficient were
evaluated); and (g) filtering duplicates according to timeframes. However, while
some modifications had a small effect on the performance, for example, adding extra
weight to terms in the title, they conclude that little was gained from such finetuning.
About 2/3 of the duplicates could be identified using their system, and they achieved
a recall at 10 of 40 %. This result was well-received among practitioners at the
company, who confirmed the potential to save effort.

Wang et al. [49] considered in addition to the textual content of the issue report
(title and description), the stack traces attached to an issue report, and represented
the features in two separate VSM models. They preprocessed text using stop word
removal and stemming, and then they applied TF–IDF feature weights. Wang et al.
also proposed to represent stack traces in a vector space, and let each invoked
method constitute a dimension. As such, each issue report was represented both
in a vector space of textual features, and a vector space of invoked methods. Then,
the combined similarity was calculated by treating both vector spaces as equally
important. If a similarity above a defined threshold was detected in any of the
vector spaces, they classified a report as a duplicate. The authors used machine
learning to establish suitable values for these thresholds. Wang et al. calibrated
their system on a small set containing 220 issue reports from the Eclipse project,
and then they evaluated their approach on a larger dataset, containing 1,749 issue
reports, collected from the issue repository used for the development of Firefox.
They conclude that complementing textual descriptions with stack traces improved
performance, as did relying on the aforementioned thresholds. Either having two
issue reports with highly similar stack traces attached, or two issue descriptions that
share a high degree of its content, was a strong indication of duplicates in the Firefox
dataset. Moreover, they confirmed Runeson et al.’s finding that up-weighting terms
in the title can be beneficial. Wang et al. reported that their system reached a recall
at 10 as high as 93 % on the Firefox dataset.

Sun et al. [45] proposed a more advanced model for duplicate detection,
including both categorical issue features as well as more advanced weighting of
textual features. Initially, they performed the same preprocessing operations as in
previous work, that is, they stemmed the content in the title and description and
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they removed all stop words. However, thereafter they calculated textual similarities,
both for unigrams (single terms in isolation) and bigrams (sequences of two terms),
using the BM25F model, a state-of-the-art IR model for probabilistic retrieval [39]
(an alternative to the algebraic VSM). Furthermore, the authors also considered
three nominal features (product, component, and type), and two ordinal features
(priority, and version). Finally, to tune the weighting of all parameters in the
similarity function, they applied machine learning to tune the feature weighting,
that is, they applied learning-to-rank ranking in their IR-approach [28].

Sun et al. evaluated their system using issue reports extracted from three open
source contexts: OpenOffice, Eclipse, and the Mozilla community. Moreover, they
compared the results with output from their previously implemented RSSE for
duplicate detection, implementing a classification-based approach (presented in
Sect. 18.2.4). In all experimental runs they obtained better results (recall at 10
consistently between 65 % and 70 %), also they reported major improvements
concerning execution times. Again, their empirical results showed that the textual
content of the title was the single most important feature. However, the results
showed that also the product and version information were important features when
recommending duplicate issue reports.

Sureka and Jalote [47] presented a different approach to textual similarities,
focusing on characters rather than terms. They proposed a character n-gram model
to calculate textual similarities between issue reports. They did not perform any
language specific stemming and stop word removal, and thus their approach allow
also cross-language recommendation of duplicates. Sureka and Jalote applied a
feature extraction model that extracted all n-grams of sizes 4 to 10 from the
titles and descriptions of issue reports. They evaluated their approach on a random
sample of 2,270 issue reports, and obtained the best results when computing textual
similarities based on titles only (recall at 10 of 40 %).

18.2.4 Duplicate Detection as a Classification Problem

Duplicate detection can also be considered a classification problem. Given a newly
submitted issue report, an RSSE can classify it as either a duplicate or a non-
duplicate based on the previously submitted issue reports. As presented in the
bottom track in Fig. 18.2, a classification-based RSSE for duplicate detection
typically involves four steps. The first two steps are shared with the IR-based
approach. First, the issue reports are preprocessed, and then the issue reports are
indexed by the remaining terms, for example, as feature vectors in the VSM as
presented in Fig. 18.3. Third, machine learning is used to train classifiers, either
multiple binary classifiers or a multi-class classifier. A major difference between
the classification approach and the IR approach to duplicate detection is thus
that the former normally requires supervised learning, that is, learning from an
annotated training set containing both positive and negative examples (Table 18.1).
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Table 18.1 Summary of studies on IR-based duplicate detection, sorted chronologically

Retrieval model Dataset
Study and features used (# issue reports) R@10 Lessons learned

Runeson
et al.
[40]

VSM. Word
unigrams
from title and
description
with TF
weights.
Categorical
feature:
project.

SEMC (undis-
closed
“large”)

40 % Fine tuning had little
effect. However, best
results for (a) short
stop word list,
(b) using thesaurus
and (c) spell checker,
(d) considering the
project field,
(e) doubling the
weight of terms in the
title, and (f) applying
a 50-day filter for
issue reports.

Wang et al.
[49]

VSM. Word
unigrams
from title and
description
with TF–IDF
weights.
Invoked
methods from
stack traces
with binary
weights.

OSS project:
Firefox
(1,749)

93 % Combining textual
features and stack
traces improve
performance,
especially when
independent
thresholds are
applied. Doubling the
weight of terms in
the title beneficial.

Sureka and
Jalote
[47]

Character
n-grams from
title and
description
(4 � n �
10).

OSS project:
Eclipse
(2,270)

40 % Acceptable results
without
preprocessing, thus
cross-language
detection possible.
Character n-grams in
titles most useful.

Sun et al.
[45]

BM25F. Word
unigrams and
bigrams from
title and
description
with TF-IDF
weights.
Categorical
features:
product,
component,
type, priority,
version.

OSS projects:
OpenOffice
(31,138),
Eclipse
(209,058),
Mozilla
(75,653)

OpenOffice:
65 %,
Mozilla:
65 %,
Eclipse: 70 %

Textual content of title
most important
feature, followed by
product and version
information. Faster
and more accurate
than [46].

“R@10” D recall at 10
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Fig. 18.4 Duplicate detection based on SVM. In this example, the three terms memory, corrupt
and crash constitute the dimensions in the vector space. An individual SVM classifier, trained for
a specific issue report, predicts that a newly submitted issue report is a nonduplicate. An optimal
separating hyperplane, a maximum margin separator, is shown to the right

The standard IR approach on the other hand, uses the existing information only,
without any learning process. In this section, we focus on describing an approach
proposed by Sun et al. [46]. They trained an individual classifier for each existing
issue report in three large issue repositories, and used the classifiers to predict
whether a newly submitted issue report is a duplicate or not. Fourth, when a new
issue report is submitted to the prototype of Sun et al., all classifiers answer the
question: “How likely is this newly submitted issue report a duplicate of this master
issue report?”.

A frequently used approach for “off-the-shelf” supervised learning is to apply
support vector machines (SVMs), when training classifiers in a new domain [41].
The SVM model maps all issue reports as points in space, where different terms can
constitute the dimensions as in the VSM, and individual issue reports are typically
represented as the endpoints of their corresponding feature vectors. SVMs then
construct a maximum margin separator, a hyperplane that divides the positive and
negative examples with a gap as wide as possible (as illustrated in Fig. 18.4), thus
creating two classes: duplicates and nonduplicates with respect to a given master
issue report. As the fourth and final step, newly submitted issue reports are mapped
to the same space, and depending on which side of the hyperplane they belong,
the classifier predicts whether the issue reports are duplicates or not. When all
SVM classifiers have made their predictions, the classification-based RSSE can
recommend potential duplicates. Further details on SVMs are presented by Menzies
[30] in Chap. 3.
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The classification-based RSSE implemented by Sun et al. [46] uses a hash-
map-like bucket structure. Each bucket contains a master report as the key, and
all its duplicate reports as values. Then, an SVM classifier is trained for each
bucket, using the duplicate reports as positive examples, and the others as negative
examples. When a new issue report is submitted, all classifiers report a probability
value given by the distance to the separating hyperplane. The probability values
are then used to rank the output, used to recommend potential master issues of a
submitted issue report. Sun et al. used a rich set of textual features to train their
classifiers. The high number of features originate from considering three different
bags-of-words (title, description, and titleCdescription) independently, allowing
three different calculations of inverse document frequencies (as IDF weights are
calculated based on frequencies in the entire collection). Moreover, they considered
both unigrams and bigrams. In total, 54 different textual similarities were calculated
between each pair of issue reports, 27 features based on unigrams and 27 features
based on bigrams.

Sun et al. [46] evaluated their system on issue reports from three open source
projects: OpenOffice, Firefox, and Eclipse. Furthermore, they implemented three
previously proposed systems for duplicate detection for comparison (Runeson et al.
[40], Wang et al. [49], and Jalbert and Weimer [20]). On all three datasets, they
showed that their system outperforms the others. Sun et al. reported recall at 10
of 60 % for both Firefox and Eclipse, and recall at 10 of 55 % for OpenOffice.
They also reported that the execution time of their system was longer than what
was required in previous work.

Jalbert and Weimer [20] also did work on duplicate detection that they refer
to as classification-based. While their approach is based on IR techniques, they
extended it by also training a classifier based on linear regression. First they
considered textual content in the title and the description as two separate bags-of-
words, and preprocessed them using stop word removal and stemming. Through
experimentation they showed that considering IDF did not improve performance
in their context. Instead, they found it the most useful to consider only term
frequencies and weigh the textual features as TF D 3 C 2 � log2.frequency/. All
issue reports were represented as feature vectors in the VSM, and they calculated
cosine similarities to induce a graph of issue reports, connecting issue reports by
undirected edges if two issue reports were more similar than a certain threshold.
Jalbert and Weimer then applied a graph clustering algorithm developed for social
network analysis [33], to generate a set of possibly overlapping nodes in the
graph, that is, potentially duplicated reports. Furthermore, they considering a set
of ordinal and nominal surface features: severity, operating system, and the number
of associated patches or screenshots. They used all the features to train a linear
regression model, and to find a corresponding output value cutoff that distinguishes
between duplicates and nonduplicates. The linear regression model could then be
used for newly submitted issue reports, to perform classifications against each
existing issue report.
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Table 18.2 Summary of studies on duplicate detection based on classification

Classifier and Dataset
Study features used (#issue reports) R@10 Lessons learned

Jalbert and
Weimer
[20]

Linear regression
model. Word
unigrams from
title and
description with
TF weights.
Categorical
features:
severity,
operating
system, nbr
attached patches
or screenshots.

OSS projects
from
Mozilla
(29,000)

45 % Performs comparably to
Runeson et al. [40].
Through simulation
they show that their
system realistically
could save effort.
Also, they show that
the textual content
in the title is the
most important
feature.

Sun et al. [46] SVM. Word
unigrams and
bigrams from
title and
description with
several TF-IDF
weights (in total
54 textual
features).

OSS projects:
OpenOffice
(12,723),
Eclipse
(44,652),
Firefox
(47,704)

�60 % Outperforms Runeson
et al. [40], Wang
et al. [49], and
Jalbert and Weimer
[20]. While the high
number of textual
features leads to
better results, more
execution time is
required.

Jalbert and Weimer evaluated their system on 29,000 issue reports from
the Mozilla community, containing reports from several development projects.
They report that their system is at least as good as the approach of Runeson et al.
[40], and achieved a recall at 10 of 45 % (Table 18.2). By conducting leave-one-out
analysis on their textual features, they concluded that the textual content of the
title was the most important, followed by the description. While other features also
brought value, they all contributed less to the linear model. Also, Jalbert and Weimer
simulated the performance of their system over 16 weeks using the submission dates
of the issue reports in their dataset, that is, they reported how their tool would have
performed if it was deployed in the Mozilla context. They used the chronological
first half of the dataset as the training set, and evaluated their work on the second
half. Their fully automated system correctly filtered 8 % of all possible duplicates,
while allowing at least one report for each real issue to reach developers. The
authors estimate that this could have saved 1.5 developer-weeks of triage effort over
16 work weeks (assuming that each manual issue triage would on average require
30 min).
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18.3 Navigating from Issue Reports in Evolving Software
Systems

Software development typically involves managing large amounts of informa-
tion, that is, formal and informal software artifacts, that evolve in response
to environmental changes and user needs. In traditional software engineering,
the software is systematically progressed through analysis, specification, design,
implementation, verification, and maintenance. However, the increase of formalized
knowledge-intensive activities tend to increase the number of artifacts maintained
in a project [52]. When software evolution accumulates changes, made by many
different developers over time and possibly from different development sites, it is a
challenge to stay on top of all information.

A different development context, also highly challenging in terms of information
access, is the development of open source systems (OSS). Mature software such as
Android, Eclipse, and Mozilla Firefox have successfully adopted OSS development
practices. Development of OSS is often characterized by globally distributed
workforces and rapid software evolution. As most collaboration is online, commu-
nication within the team must be smooth, and all available information must be
easily accessible. Open source projects typically rely on simple techniques such as
discussion forums and mailing lists for communication, complemented by advanced
version control systems for managing source code and supporting artifacts [12].
While the number of artifact types are typically lower than in traditional software
development, quick and concise access to information is essential as teams cannot
rely on face-to-face communication.

Thus, both large traditional projects and OSS projects risk being threatened by
information overload, a state where individuals do not have the time or capacity
to process all available information [15]. Knowledge workers frequently report the
stressing feeling of having to deal with too much information [14], and in general
spend a substantial effort on locating relevant information [24]. Thus, an important
characteristic of a software development context is the findability that it provides,
defined as “the degree to which a system or environment supports navigation and
retrieval” [34]. A prerequisite to developing an RSSE for navigation support is to
properly understand the context of the work task that is to be supported.

This section presents two separate examples of RSSEs supporting software
evolution, where issue reports are used as “hubs” in generating traces between
information items. First, we present Hipikat [12], an RSSE targeting software
evolution in open source projects, specifically aiming at helping project newcomers.
Second, we introduce ImpRec, an RSSE supporting safety-critical change impact
analysis in a company with rich development processes. Both RSSEs are based on
knowledge reuse from previous collaborative effort in projects complemented by
textual analysis of artifact content, and rely on artifact usage rather than explicit
ratings provided by engineers.

We present both Hipikat and ImpRec using a four-step model, shown in Fig. 18.5.
The development of the RSSEs starts by modeling the information space, to create
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Fig. 18.5 Four step model for development of an RSSE for navigation support

a schema that can be used to represent the involved software artifacts. Second, the
developed model is populated by historical data from the corresponding projects,
and stored in an actionable data structure. Also as part of this step, textual content of
artifacts are preprocessed and indexed. When the historical data has been processed,
the RSSEs are ready to calculate recommendations. This can either be initiated by
the developer explicitly, or implicitly based on the work task the developer pursues
at a given time. The final step in the model covers how the recommendations are
presented to the developers.

Hipikat and ImpRec are not the only approaches supporting navigation in large
software engineering projects. Begel et al. [3] developed Codebook, a framework
for connecting engineers and their software artifacts. It was developed to support
mining various software repositories, and to capture relations among people and
artifacts in a single graph structure. Codebook was evaluated by implementing portal
solutions at Microsoft, helping developers discover and track both colleagues and
work artifacts in a large software project. Seichter et al. [42], also inspired by the
social media revolution, addressed the management of artifacts software ecosystems
by creating “social networks” with artifacts as first-class citizens. The explicitly
visible network of artifacts supported maintaining relations between artifacts and
enabled personal “news feeds” for involved developers, containing recommenda-
tions for relevant changes, possible dependencies, etc. Gethers et al. [17] proposed
automated impact analysis from textual change requests, an approach that is reused
in ImpRec. Their tool combined IR techniques, analysis of software evolution using
data mining, and execution information via dynamic analysis to recommend an
initial set of impacted methods in the source code of four OSS systems.

18.4 Hipikat: Helping a Project Newcomer Come
Up-to-Speed

Hipikat was developed by Čubranić et al. to build a project memory to support
newcomer software developers by using information about past modifications to
the project. The aim is to help them perform modification tasks to the system
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Fig. 18.6 Client–server architecture of Hipikat [adapted from 12]

more effectively [10, 12]. Hipikat has mainly been studied in the context of the
Eclipse OSS community. The main Eclipse project is the Eclipse Platform, a mature
integrated development environment (IDE) written in Java, known for its extensible
architecture and many third-party plug-ins.

For software developers joining the Eclipse Platform project, the first contact
with the heterogeneous information space of the project can be discouraging:
there are several thousands of files, issue reports, documentation, and discussions.
In a traditional project, the developer would join a team and gain knowledge
through mentoring [44]. An experienced team member would work closely with
the newcomer and orally impart the information structure and help him becoming
productive. However, in OSS projects such lightweight interaction is typically not
possible as the developers are globally distributed. Thus, it is challenging for
a project newcomer to come up-to-speed and learn a new software system, for
example, navigating source code and finding issue reports relevant to the work task
at hand.

Hipikat is implemented as a client–server architecture, as depicted in Fig. 18.6.
The server maintains the project memory, a semantic network of artifacts and
relations, formed during development and updated as the target system evolved.
Developers interact with Hipikat clients, which can be implemented in various
ways, such as the Eclipse plug-in developed by Čubranić et al. [12]. The server
and the clients communicate over a SOAP RPC protocol, and the server provides
recommendations to the clients in an XML format [10]. Sections 18.4.1–18.4.2
present Hipikat according to the structure in Fig. 18.5.

18.4.1 Step 1: Modeling the Hipikat Project Memory

Čubranić et al. developed Hipikat with the ambition to provide a project newcomer
recommendations of source code, accompanying information, and stored developer
communication relevant to an issue report. Figure 18.7 displays the five artifact types
represented in the project memory, and the relations among them. Four of the types

www.eclipse.org
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Fig. 18.7 Entity–relation diagram of the software artifacts in the Hipikat project memory [adapted
from 12]

correspond to artifacts commonly created in OSS projects. The central entity is the
issue report. Source code file versions implement resolutions to issues described in
issue reports, and might be related to other file versions in the same commit. Project
documents represent accompanying information posted on the project website,
for example, design documentation, and such artifacts might document aspects
relevant to an issue report. Another artifact type in the model is the project message
(e.g., in discussion forums or mailing lists) that might contain information about
an issue report. Messages might also be related to each other as they might be
posted as responses, that is, “reply-to” links. Furthermore, the Hipikat model also
covers implicit relations between documents and between issue reports respectively,
modeling that these artifacts might have outgoing “similar to” relations if artifacts
share much content (represented by dashed edges in Fig. 18.7). Finally, the scheme
of the project memory represents persons, who might work on issue reports, post
messages, and write documents and source code file versions.

18.4.2 Step 2: Populating the Hipikat Project Memory

The Hipikat server is responsible for populating the Hipikat project memory. The
server has three functions, implemented in three subsystems as seen in Fig. 18.6.
The update artifacts subsystem monitors the project information space for additions
and changes during the OSS evolution. Čubranić et al. distinguish between three
categories of artifacts in the Eclipse Platform development project: immutable
(e.g., source file revisions), modifiable but not deletable (e.g., issue reports in
Bugzilla), and changeable (e.g., webpages). The update subsystem has separate
modules for the following project information sources: CVS (the version control
system), Bugzilla (the issue repository), www.eclipse.com (the webpage), Usenet
newsgroups, and Mailman (the archive of email messages). Change listeners in the
subsystem are notified as the information space changes, and new and modified
artifacts are inserted in the artifact database (see Fig. 18.6). More specifically, the

www.eclipse.com
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artifact database stores mostly artifact metadata, for example, ID, author, path and
creation date, but also natural language content is stored such as commit comments,
issue descriptions and email body text.

Apart from the artifacts stored in the project memory, a vital aspect of the
project memory is the relations among them. Some explicit relations are directly
available in the artifact metadata, for example, authors and dates. However, Hipikat
also implements several modules that independently analyze artifact content to
deduct additional links. Moreover, Hipikat creates links with different confidence,
a measure of trustworthiness that is used when presenting recommendations to
the developer. The four link types “implements,” “part-of-commit,” “reply-to,” and
“similar-to” (see Fig. 18.7) are identified in the identify links subsystem using the
following five modules [10]:

Log Analyzer Uses regular expressions to identify commit comments containing
issue IDs to insert high confidence “implements” links.

Activity Matcher Searches for commits by a developer that occur shortly before
the same developer changes the status of an issue report to resolved. Inserts
implements links between source code file version and issue reports to the project
memory with confidence reflecting the time span.

CVS Commit Matcher Identifies file versions checked in within a few minutes.
“Part-of-commit” links are added if they have the same author and commit
comment.

Thread Matcher Identifies both conversation threads of newsgroup postings and
email threads by looking for specific headers in the stored messages. “Reply-to”
links are inserted accordingly.

Text Similarity Matcher Predicts relations among documents and among issue
reports (see Fig. 18.7) based on the similarity of the textual content. This is
implemented in the same manner as the IR-based duplicate detection described
in Sect. 18.2.3. All textual content is preprocessed using stop word removal and
stemmed using Porter’s stemmer, then indexed using the VSM. Hipikat uses
the log-entropy model for feature weighting. As an additional step, the vector
space is transformed using latent semantic indexing [13] (further described by
Menzies [30] in Chap. 3), an approach that aims to remove noise and to deal with
synonymy. Finally, cosine similarities are calculated and “similar-to” links are
added to the project memory.

18.4.3 Step 3: Calculating Recommendations in Hipikat

The third subsystem developed in the Hipikat server, Select (see Fig. 18.6), cal-
culates recommendations by using the relationship links in the project memory.
Hipikat recommendations are always calculated in response to a query, either
explicitly initiated by the user, or implicitly as the user performs work tasks [12].
An implicit query identifies the artifact from which the query originates, and that
might also contain additional context options. For explicit queries, Hipikat searches
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Table 18.3 Summary of links followed in the Hipikat project memory

Module Type of link Confidence Link source Link target

Log Analyzer Implements High Commit Issue report

Activity Matcher Implements
Low, Medium,
Medium high,

High
Commit Issue report

CVS Commit Matcher Part-of-commit

Medium low,
Medium,

Medium high,
High

Commit Commit

Thread Matcher Reply-to — Message Message

Text Similarity Matcher Similar-to
Cosine

similarity Document Document

Text Similarity Matcher Similar-to
Cosine

similarity Issue report Issue report

Fig. 18.8 Example of Hipikat recommendation trails, in this case items in the project memory
related to Issue A. Issue reports are represented as boxes, and source code file versions as ovals. All
edges are directed, and have a confidence value as indicated by the edge weights [adapted from 10]

for the artifact the developer specifies in the query. The Select subsystem locates
that artifact in the project memory, and follows relationship links to generate a set
of recommended artifacts for the developer to consider in his current work task.

The Select subsystem contains modules that correspond to the five identification
modules described in Sect. 18.4.2. As the modules recommend artifacts, they
also provide rationales for their choices as well as Hipikat’s confidence for the
recommendations. Before the final recommendations are presented to the developer,
the output from the modules is merged. If multiple modules recommend the
same artifact, only the one with the highest confidence will be kept. Table 18.3
lists the link types that are followed by Hipikat, to enable the RSSE to detect
recommendation trails in the project memory. Figure 18.8 shows an example of such
trails, originating from a study on the Avid visualizer, a Java tool for visualizing the
operation of a Java system [10].
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Fig. 18.9 The Hipikat user interface. To the left, querying Hipikat from a context menu. To the
right, presentation of Hipikat recommendations [reproduced, with permission from the original
developers, from 10]

18.4.4 Step 4: Presenting Recommendations

The Hipikat client is available as an Eclipse plugin, which means it is integrated
in the IDE. The goal of Čubranić et al. was to develop an unobtrusive client, so the
user interaction is kept simple. Primarily, the developer explicitly queries Hipikat for
recommendations from context menus. “Query Hipikat” is an available menu item in
the context menus of several entities in Eclipse, for example, version controlled files
either in the workspace Navigator or opened in the Java editor, files in Repository
view, revisions in the Resource History view and Java classes in the Outline or
Hierarchy views.

As a response to queries from the Hipikat client, the Hipikat server returns a
list of recommended artifacts as presented in Sect. 18.4.3. The list is presented in a
Hipikat Results view, where each recommended artifact is displayed together with
its type, why it is recommended and the confidence of the recommendation. The
recommended articles are grouped by artifact type. Double-clicking on an artifact
opens them for viewing, either directly in Eclipse, or in a web browser. Moreover,
the developer can also initiate new Hipikat queries from the context menus of the
artifacts in the Results view (Fig. 18.9).

Developers using Hipikat can also provide feedback on the recommendations.
For each recommended artifact, a developer can select “like” or “dislike”. Dislikes
clean the list of recommendations, that is, disliked artifacts are removed from the
list. Liked recommendations, on the other hand, move to the top of the list. To better
use the developer feedback is one out of several improvements that Čubranić [10]
outlined to further improve Hipikat; however, the RSSE is not actively developed
anymore.
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Table 18.4 Impact analysis template. Questions in bold fonts require explicit
trace links to other artifacts. Based on a description by Klevin [26]

Impact Analysis Questions for Error Corrections

Q1 Is the reported problem safety critical?
Q2 In which versions/revisions does this problem exist?
Q3 How are general system functions and properties affected by the change?
Q4 List modified code files/modules and their SIL classifications, and/or affected

safety related hardware modules.

Q5 Which library items are affected by the change? (e.g., library types, firmware

functions, HW types, HW libraries)

Q6 Which documents need to be modified? (e.g., product requirements specifica-

tions, architecture, functional requirements specifications, design descriptions,

schematics, functional test descriptions, design test descriptions)

Q7 Which test cases need to be executed? (e.g., design tests, functional tests, se-

quence tests, environmental/EMC tests, FPGA simulations)

Q8 Which user documents, including online help, need to be modified?

Q9 How long will it take to correct the problem, and verify the correction?
Q10 What is the root cause of this problem?
Q11 How could this problem have been avoided?
Q12 Which requirements and functions need to be retested by product test/system

test organization?

18.5 ImpRec: Supporting Impact Analysis in a Safety
Context

The goal of ImpRec is to support artifact navigation in a development organization
in a large multinational company, active in the power and automation sector.
The development context is safety-critical embedded development in the domain
of industrial control systems, governed by IEC 615111 and certified to a Safety
Integrity Level (SIL) of 2 as defined by IEC 61508.2 The targeted system has
evolved over a long time, the oldest source code was developed in the 1980s.
A typical project has a duration of 12–18 months and follows an iterative stage-
gate project management model. The number of developers is in the magnitude of
hundreds, distributed across sites in Europe, Asia and North America.

As specified in IEC 61511, the impact of proposed software changes should be
analyzed before implementation. In the case company, this process is integrated in
the issue repository [6]. As part of the analysis, engineers are required to investigate
the impact of a change, and document their findings in an impact analysis report
according to a project specific template. The template is validated by an external
certifying agency, and the impact analysis reports are internally reviewed and
externally assessed during safety audits.

A slightly modified version of this template is presented in Table 18.4. Several
questions explicitly ask for trace links (6 out of 12 questions). The engineer is
required to specify source code that will be modified (with a file-level granularity),

1Functional safety—Safety instrumented systems for the process industry sector.
2Functional safety of Electrical/Electronic/Programmable Electronic safety-related systems.
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Fig. 18.10 Impact analysis supported by ImpRec. Trace link structure created by collaborative
effort. Trace links among defects and from impact analysis reports to requirements, HW descrip-
tions, and test cases

and also which related software artifacts need to be updated to reflect the changes,
for example, requirement specifications, design documents, test case descriptions,
test scripts and user manuals. Furthermore, the impact analysis should specify which
high-level system requirements cover the involved features, and which test cases
should be executed to verify that the changes are correct once implemented in
the system. In the addressed software system, the extensive evolution has created
a complex dependency web of software artifacts, thus the impact analysis is a
daunting work task.

Figure 18.10 shows an overview of the ImpRec recommendation approach.
To the left, a developer is about to conduct a new impact analysis as part of
a defect correction, that is, answering Q1–Q12 of the impact analysis template
in Table 18.4. First, content-based filtering is used to find issue reports with
descriptions similar to the current issue report stored in the issue repository. The
same techniques as presented in Sect. 18.2.3 on detection of duplicate issue reports
using IR approaches are applied. Then, originating from the most similar issue
reports, the collaboratively constructed trace link network, the “trails of previous
developers in the information landscape” is used to recommend which trace links
the developer should consider specifying in the impact analysis report. As such,
the new impact analysis work task is seeded by the pre-existing traceability from
past impact analysis reports. The network of collaboratively created trace links is
referred to as the knowledge base, a concept corresponding to the project memory
in Hipikat. Note that the current scope of ImpRec is limited to recommend noncode
artifacts relevant to an issue report, as these are considered more challenging in the
case company.
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Fig. 18.11 Entity–relation diagram of the software artifacts in the ImpRec knowledge base

18.5.1 Step 1: Modeling the ImpRec Knowledge Base

Figure 18.11 shows the model of the knowledge base as an entity–relation diagram.
The impact analysis report that is attached to issue reports that cause changes
to safety-critical source code is the hub in the model. An impact analysis report
can contain trace links to several different artifact types, specifying relationships
from individual issue reports (Q4–Q8 and Q12 in Table 18.4). Requirements (e.g.,
system requirements, safety requirements, and functional descriptions) can specify
functionality that is impacted by the problem described in an issue report. Test
specifications can verify functionality that is described in an issue report. Also,
making the changes required to resolve an issue report might force updates to
test specifications as well. The changes might also impact hardware specifications.
Finally, an issue report can be related to other issue reports, a relation that is explic-
itly specified by developers in the issue repository (presented also in Fig. 18.10).
Furthermore, as the type of artifacts cannot always be deduced by ImpRec,
miscellaneous artifacts and miscellaneous links are also included in the model.

18.5.2 Step 2: Populating the ImpRec Knowledge Base

To aggregate the trace links from previous developers, ImpRec mines the issue
repository [7]. In the studied case, 4,845 out of the 26,703 issue reports in the
issue repository contain impact analysis reports. As a first step, the issue reports
in the issue repository were exported to an extended comma-separated-value (CSV)
format, a format specified by the vendor of the issue repository, and transformed
to XML. Thus, the overall information of the issue reports were well structured;
however, the attached impact analysis reports were stored as text elements. On
the other hand, the textual information in the text elements were semi-structured
according to the structure in the impact analysis template in Table 18.4.

Then, regular expressions were used to extract trace links from the impact
analysis reports. Due to the fixed format of artifact IDs, this method could extract
all correctly formatted trace links. To determine the type of the extracted trace links,
two heuristics were used. Thanks to the structure of the impact analysis template,
each trace links corresponded to a specific question. As such, in the context of
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Table 18.5 Types of links extracted from the issue repository. All links have an
issue report as source. “IA” D impact analysis

Trace link type Description
Classification

strategy
Count

related to

Link to another issue report that
has been signaled by an engineer as
related. The link is not bidirectional
by default.

Separate field in
issue report 18,835

specified by
Link to a specific requirement. Used
to signal that a requirement needs to
be updated, or requires verification.

Format of
requirement IDs 3,996

verified by
Link to a test case description that
needs to be executed, or a require-
ment that requires verification.

IA template, Q8
and Q12 2,297

needs update
Link to a software artifact that needs
to be updated.

IA template, Q7
and Q9 1,106

impacts HW
Link from an IA report to a hardware
description that is impacted by the
issue or its implemented resolution.

IA template, Q6 1,221

miscellaneous link
Trace links from an IA report to an
artifact, but the meaning of the link
could not be deduced.

Default choice 775

Table 18.6 Types of nodes extracted from the issue repository. “IA” D impact
analysis

Trace artifact type Description
Classification

strategy
Count

issue report An individual issue report. Separate item in
issue repository 26,703

impact analysis report A documented impact analysis. Attached to an
issue report 4,845

requirement
An individual requirement. The re-
quirements are organized in require-
ment specifications.

Separate ID
format 572

test specification
A document that contains test case
descriptions.

IA template, Q8
and Q12 243

HW description
An artifact that describes the behav-
ior of hardware

Separate ID
format 1,106

miscellaneous artifact
An artifact whose type could not be
deduced. Default choice 376

Q8 and Q12 it could be deduced that the meaning of the links was related to
verification, Q7 and Q9 deal with document updates, and Q6 refers to impact on
hardware descriptions. Second, as requirement IDs have a distinguishable format in
the company, also requirements specifications could be identified.

Next, explicit trace links between issue reports in the issue repository were
extracted [8]. Each defect in the issue repository has a field “Related issues” used
by engineers to manually signal other issues as related, by adding their issue IDs.
Finally, the two extracted networks were combined into a single network, the
ImpRec knowledge base. The knowledge base, consisting of 29,000 nodes and
28,230 edges, is represented as a semantic network expressed in GraphML [9].
Tables 18.5 and 18.6 summarize the different types of extracted trace links and
trace artifacts.
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Fig. 18.12 A visualization of the knowledge base, displaying the largest component (10,211
artifacts and 23,078 relations)

Note that this only contains artifacts actually pointed out by the previous impact
analysis reports, and that the total number of artifacts in the content management
systems in the company is much higher. However, while the extracted traceability
is a partial view, this is the traceability associated with the most volatile parts of the
system to date, and thus a pragmatic starting point for future impact analyses.

Figure 18.12 shows an overview of the largest interconnected component of the
knowledge base, comprising 36.2 % of the nodes and 81.7 % of the edges, created
in the graph editor yEd [32] using an organic layout. The graph nodes are treated
like physical objects with mutually repulsive forces. The edges on the other hand
are considered to be metal springs attached to nodes, producing repulsive forces if
they are long and attractive forces if they are short. By simulating these physical
forces, the organic layout finds a minimum of the sum of the forces emitted by
nodes and edges. Output from organic layouts typically show inherent symmetric
and clustered graph structures, useful for finding highly connected backbone
regions in a graph. Although the primary purpose of the knowledge base is not to
enable visual analytics, visual representations of complex information might enable
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additional insights [25]. Regarding the knowledge base, we can make some general
observations. First, Fig. 18.12 shows that there is a highly interconnected central
region containing thousands of artifacts, rather than several distinctive clusters.
This region displays a high link density, and while “specified by” (i.e., links to
requirements) dominate the central region, all link types are present. This implies
that changes to an artifact in this region could impact a high number of artifacts.
In general, the complex link structure displayed in Fig. 18.12 suggests that much
traceability information about artifact relations in the software system has been
captured in the knowledge base.

18.5.3 Step 3: Calculating Recommendations in ImpRec

When the knowledge base is represented as a semantic network, ImpRec calculates
recommendations in three steps:

1. Retrieval of likely related issue reports, based on their textual content
2. Search for artifacts that previously were marked as impacted, based on the

collaboratively created knowledge base
3. Ranking the identified artifacts based on textual similarities and network

structure

First, ImpRec uses content-based filtering, based on the textual content of the
issue reports, to identify starting points in the knowledge base. Both terms in
the title and description of issue reports are considered, after stemming and stop
word removal. Then the remaining textual features are assigned TF–IDF weights
before representing them in the VSM. ImpRec then calculates cosine similarities
between the given issue report and all others, and finally rank them accordingly.
This work is in line with previous work on IR-based duplicate detection presented
in Sect. 18.2.3. ImpRec considers the top five issue reports, corresponding to the five
highest non-zero cosine similarity values, as starting points 1–5 in the knowledge
base. Moreover, the similarity values of the five issue reports are re-normalized
between 0 and 1 (SIMi ) for later ranking purposes.

Originating from the starting points, ImpRec performs breadth-first searches in
the knowledge database to find artifacts (ARTx) that previously have been pointed
out as impacted. First, impacted artifacts linked from starting points are identified,
then issue reports connected to the starting points are considered. ImpRec searches
for impacted artifacts up to three levels away from starting points (LEVEL), that
is, a maximum of three “related issue” links from a starting point are followed.
The searches from each starting point results in an impact set of possibly impacted
artifacts (SET i ), which are then used as input to the ranking engine.

In the knowledge base, ImpRec calculates centrality measures for each artifact
(CENTx). As the artifacts ImpRec recommends are only link targets, that is,
they have no outgoing links themselves, only the number of incoming edges are
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Fig. 18.13 Example calculation of impact recommendation in a simplified knowledge base

considered for this calculation. The resulting in-degree centralities are normalized
between 0 and 1 and also used as input to the ranking engine.

The ranking of the artifacts in the set of recommendations is based on their indi-
vidual weights. The general equation for calculating the weight of a recommended
artifact, weight.ARTx/, is the following:

weight.ARTx/ D
X

ARTx2SETi
1�i�5

a � SIMi C b � CENTx

c � LEVEL
(18.1)

where SIMi is the similarity of the issue report that was used as starting point when
identifying ARTx, LEVEL is the number of related issue links followed from the
starting point to identify ARTx, and CENTx is the centrality measure of ARTx in
the knowledge base. The constants a, b, and c permit tuning for context-specific
improvements.

Figure 18.13 illustrates the calculation of an example recommendation in a
simplified knowledge base where a D b D c D 1. First, content-based filtering
based on textual features finds two starting points in the network, with normalized
similarity values equal to 1 and 0.6, respectively. Starting point 1 (Issue B in the
figure) does not have any direct links to any impacted artifacts; however, a breadth-
first search identifies Req A and Test A through Issue C. Both Req A and Test A are
added to Impact set 1. Starting point 2 (Issue D in the figure) on the other hand has
direct links to impacted artifacts; thus, Req A and Req B are both added to Impact
set 2. The weight of the individual artifacts in each impact set is then calculated
according to (18.1), considering textual similarities (SIM1 D 1 and SIM2 D 0:8),
node centralities (CENTReqA D 1, CENTReqB D 0:5, and CENTTestA D 0:5), and the
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Fig. 18.14 Prototype user interface for ImpRec. A is used for inputting the natural language issue
report. Output is presented to the right, possibly related issues in B, and suggestions for impacted
software artifacts in C

number of links followed between issue reports (2 for artifacts in Impact set 1 and
1 for artifacts in Impact set 2).

Finally, the weights of the artifacts in the two impact sets are summarized
(presented in the lower right part of Fig. 18.13). Req A is included in both Impact
sets 1 and 2; thus, its final weight in the list of ranked recommendations is
1C1:8 D 2:8. The weights of Req B and Test A are lower, 1:3 and 0:8, respectively,
which results in lower rankings for them.

18.5.4 Step 4: Presenting Recommendations

The developers at the case company all work in an Microsoft Windows environment;
thus we have not considered ImpRec for multiple platforms. The current version of
ImpRec is written as a lightweight standalone tool in .NET, supporting basic user
interaction. Figure 18.14 shows the ImpRec user interface. The leftmost frame is
used to input the description of the issue report for which the developer is conducting
an impact analysis. Based on the textual content in the text box, recommendations
are calculated when the developer clicks the “Impact?” button.

The center and rightmost frames in ImpRec are used to present the calculated
recommendations. In the center frame, the issue reports ImpRec recommends a
developer to investigate are presented, that is, similar to how RSSEs for duplicate
detection (see Sect. 18.2) typically report candidate duplicates. In the rightmost
frame, ImpRec lists the most likely impacted artifacts. The content in both the
frames are sorted, to ensure the recommendations with the highest confidence are
presented first.

For ImpRec to be truly integrated in the impact analysis process, the tool needs to
be integrated in the working environment of the developers. As the impact analyses
are conducted with issue reports as starting points, and the outcome is stored as
attachments to issue reports, the natural approach is to develop an ImpRec plugin to
the issue repository used in the organization.

Early evaluations using 90 % of the dataset for training and the last 10 % as a test
set show that about 40 % of the previous impact could be identified by ImpRec. The
highest possible recall for this dataset is thus relatively low. However, the ranking
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function appears promising as ImpRec achieved a recall at 5 of 30 %. This result was
positively acknowledged by developers in the targeted organization as a quick way
to find a starting point in the impact analysis work task with a manageable number
of false positives. Moreover, recommendations regarding related issue reports were
appreciated, and considered more practical than the current search function in the
issue repository. As a final note, developers stressed the need to keep the knowledge
base updated. Test runs on new issue reports using the 18-month old knowledge base
in the prototype revealed that ImpRec’s recommendations did not reflect the latest
work in the organization. While this finding is not surprising due to the dynamics
of software engineering, it highlights the need for future work both on how to
automatically update the knowledge base and how to identify obsolete content.

18.6 Conclusion

Issue reports are primarily used as “batons” in the communication between different
actors in the software development process, whether in-house or open source.
This chapter demonstrates that there are several aspects to issue reports that
benefit from recommendation systems. First, we presented different approaches to
recommending duplicate issue reports, either for reducing information overload by
merging duplicates, or to provide more information of the issue at hand, for example,
for other recommendation systems. Evaluations indicate recall of 40–93 % when
considering the top 10 recommendations. While the results are promising, further
research is needed to understand variations and tailoring to specific contexts. Sec-
ond, we presented two approaches to recommending traces to software engineering
artifacts, using issue reports as an information “hub,” implemented in the tools
Hipikat and ImpRec. Both approaches have shown potential of being useful for
practitioners to help navigating a continuously expanding software project. Still,
they have to be better integrated into development environments, and heuristics for
the search methods have to be improved to make them feasible for everyday practice.
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Chapter 19
Recommendation Heuristics for Improving
Product Line Configuration Processes

Raúl Mazo, Cosmin Dumitrescu, Camille Salinesi, and Daniel Diaz

Abstract In mass customization industries, such as car manufacturing, configu-
rators play an important role both to interact with customers and in engineering
processes. This is particularly true when engineers rely on reuse of assets and prod-
uct line engineering techniques. Theoretically, product line configuration should
be guided by the product line model. However, in the industrial context, the
configuration of products from product line models is complex and error-prone
due to the large number of variables in the models. The configuration activity
quickly becomes cumbersome due to the number of decisions needed to get a
proper configuration, to the fact that they should be taken in predefined order,
or the poor response time of configurators when decisions are not appropriate.
This chapter presents a collection of recommendation heuristics to improve the
interactivity of product line configuration so as to make it scalable to common
engineering situations. We describe the principles, benefits, and the implementation
of each heuristic using constraint programming. The application and usability of the
heuristics is demonstrated using a case study from the car industry.

19.1 Introduction

Product line engineering (PLE) is a viable and important reuse-based development
paradigm that allows companies to realize improvements in time to market,
cost, productivity, quality, and flexibility [8]. According to Clements and Northrop
[9], PLE is different from single-system development with reuse in two aspects.
First, developing a family of products requires “choices and options” that are
optimized from the beginning and not just a single product specification that evolves
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over time. Second, product lines imply a preplanned reuse strategy that applies
across the entire set of products rather than ad hoc or opportunistic reuse. The
product line strategy has been successfully used in many different industry sectors,
and in particular, in software development companies [9, 27]. Many different kinds
of artifacts can be reused: including requirements, to model fragments, code, test
data. These artifacts can be embodied as patterns, libraries of classes and meta
classes, services or parameterized components. Reuse can be achieved in many
different ways: instantiation, integration, composition or setting up parameters.

The product line (PL) is often so complex that it is not even possible to make an
extensive list of all possible products. One example is the vehicle product line of the
French manufacturer Renault, which can lead to 1021 configurations for the “Traffic”
van product family [3]. On the one hand, in Internet applications, it is important to
ensure short response times and support multiple users (e.g., the online Renault
car configurator). On the other hand, engineering applications need to support the
specification and configuration of large product line models. Due to their complexity
and size, it becomes difficult for the engineer to parse and configure these models.
This is where recommendation techniques can improve some of the shortcomings of
product line configuration of large models. This chapter presents an application of
recommendation heuristics to the configuration of product line models. It discusses
the advantages of each of these heuristics in respect to experiments on a model of a
family of parking brake systems.

In Sect. 19.2, we present background information related to the configuration of
product lines and variability modeling. This is also where introduce an industrial
case based on the configuration of an automotive electric parking brake (EPB)
system. In Sect. 19.3, we introduce the set of heuristics for the configuration
of product lines. In Sect. 19.4, we present a practical “hands-on” experience for
transforming the product line OVM model to a GNU Prolog constraint model,
followed by the implementation of heuristics in GNU Prolog. Finally, in Sect. 19.5,
we discuss the usage and advantages of each heuristic and explain the context where
each of them should be applied.

19.2 Background

PLE explicitly addresses reuse by differentiating between two kinds of development
processes [27]: domain engineering and application engineering. The aim of the
domain engineering process is to manage the reusable artifacts participating in the
PL and the dependencies among them.

The reusable artifacts, called domain artifacts (e.g., requirements, architectural
components, pieces of processes, methods, and tests), are related in a model
representing the legal combinations of the reusable artifacts (called product line
model). The aim of the application engineering process is to exploit the product line
model in order to derive specific applications by reusing the domain artifacts. To
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generate new products, PLE takes into account the customer requirements but also
the constraints of the PL domain.

The specification of requirements in the context of PLs is called a configuration
process. In PLE, a configuration process is a step-wise process, with the objective
to deliver configurations that both satisfy the domain constraints, provided by the
product line model, and the stakeholders’ requirements, which can be specified
too [13]. Dealing with PL constraints in domain and application engineering has
been the subject of extensive literature that suggests different approaches, mostly
based on constraint and satisfiability (SAT) problem solving [25, 28]. Configuration
requirements can be completely specified (i.e., to have a complete configuration,
otherwise called completely defined configurations in which all variables have a
value) or partially specified (i.e., to have partial configuration, in other words,
configurations in which some decisions remain to be achieved). Once a complete
or a partial configuration is specified, it evolves in its own project with the aim to
become a new product.

The main requirement of people using these models is to support the navigation
of the large models. While some approaches suggest to handle the configuration
process in advance, either in the PL specification itself [11] or in addition to it [1],
recommendation is clearly a track that has been overlooked by the literature and that
still needs to be considered.

In Chap. 2, Felfernig et al. [16] introduce two categories of knowledge-based
recommendation approaches: case-based recommendation [7] and constraint-based
recommendation [32]. Broadly speaking, case-based recommendation treats rec-
ommendation as a similarity-assessment problem and constraint-based recom-
mendation as a process of constraint satisfaction. In this chapter, we consider a
third category of knowledge-based recommendation that we call heuristics-based
recommendation. We classify this technique as a knowledge-based technique as
it is based on a set of knowledge sources that were implemented as heuristics
to recommend what element(s) to configure during product line model (PLM)
configuration processes. There are no a priori limitations on how the heuristics
presented in this chapter can be combined or the field in which they can be applied.

During the configuration process, it is possible to make the distinction between
three types of recommendation: recommendation based on the PLM, recommenda-
tion based on a set of predefined heuristics and trace-based recommendation:

Recommendation based on the product line model. Allows the user to perform
choices according to his requirements by navigating through the available
alternatives at any given moment. Most of the approaches in the product line
literature deal with this type of recommendation by only taking into account
explicitly defined information in the product line (variability) model.

Heuristics-based recommendation. Suggests choices that shorten the configura-
tion time, leading to valid configurations, based on a set of heuristics. The
contribution of this chapter focuses on this type of recommendation.
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Trace-based recommendation. Suggests choices based on previous (logged) con-
figurations and the current stage and context of each project. This type of
recommendation is out of the scope of this chapter.

19.2.1 Configuration of Product Line Models

An interactive product configurator is a tool that allows the user to specify a
product according to his specific requirements and the constraints of the product
line model to combine these needs. This process can be done interactively—that
is, in a step-wise fashion—and guided—that is, proposing the resolution of certain
requirements before others and automatically proposing a valid solution when there
is only one possible choice in the solution space. To be useful in the e-commerce
context, a configurator must be complete (i.e., to ensure that no solutions are lost),
allow order-independent selection/retraction of decisions, give short response times
and offer recommendation to maximize the possibilities to have one satisfactory
configuration. Solution techniques applied to the interactive configuration problem
have been compared by Hadzic and Andersen [17] and Hadzic et al. [18]. They
mainly distinguish approaches based on propositional logic, on the one hand, and on
constraint programming, on the other hand. When using propositional logic based
approaches, configuration problems are restricted to logic connectives and equality
constraints [18, 31]. Arithmetic expressions are excluded because of the underlying
solution methods. These approaches have two steps. First, the feature model is
translated into a propositional formula. In the second step the formula is solved
by appropriate solvers, in particular SAT solvers [25], and solvers based on binary
decision diagrams (BDDs) [18, 30]. BDD-based solvers translate the propositional
formula into a compact representation, the BDD. While many operations on BDDs
can be implemented efficiently, the structure of the BDD is crucial as a bad variable
ordering may result in exponential size and, thus, blow up in memory.

Feature models can be naturally mapped into constraint systems in order to
reason (e.g., perform configuration) on them, in particular into communicating
sequential processes (CSPs) [5,10,30]; into constraint programs over finite domains
(CPs) [21]; and into constraint logic programs (CLPs) [24].

There are several academic tools dealing with configuration of product line
models (e.g., SPLOT, FaMa, VariaMos [22], Feature Plug-in [2]), but very few have
looked at PL tools and their ability to answer industry needs [3].

Jiang et al. [19] propose a constraint-based recommendation technique that gives
to stakeholders a minimal set of repair actions in situations where no solution can
be found for their configuration choices. Their approach also takes into account
the preferences of a customer community to include collaborative recommendation.
Authors deal with the situation where no solution can be found for the customers’
configuration as a constraint satisfaction problem. Authors use a well-known
collaborative recommendation technique consisting in calculating the contribution

http://www.isa.us.es/fama/?FaMa_Framework
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Fig. 19.1 Legend for the OVM representation of variability

of each configuration choice in terms of reliability, economy, and performance by
means of a utility function—such as multi-attribute utility theory (MAUT) by von
Winterfeldt and Edwards [34]. The utility term of von Winterfeldt and Edwards
denotes the degree of fit between a feature of the product and the given set of
customer requirements.

19.2.2 Variability Modeling

In the automotive industry, reuse is a core asset that allows car manufacturers to
develop products faster and stay competitive. One of the most promising ways to
manage reuse is by means of a product line approach. In the PL approach, the valid
combinations of reusable artifacts are represented by means of a product line model.
There are several notations used in industry to represent their product line models;
for instance, the orthogonal variability model (OVM) notation [27], the DOPLER
notation [11], and the constraint-based notations [3, 23]. Since the industrial case
used in this chapter is originality presented in the OVM notation, we will use
this formalism to illustrate the application of the approach. OVM is a language to
document variability though variants, variation points, and variability dependencies
among them.

The term variant used in this chapter is specific to product lines and is somewhat
different from the same term used throughout the book. According to Pohl et al. [27],
variants are associated to the different shapes of an artifact available at the same
time. The term is thus associated to variability in the space of the product family
artifacts, in opposition to variability in time, which according to Pohl et al. is defined
as “the existence of different versions of an artifact that are valid at different times.”

Figure 19.1 illustrates the concrete syntax of OVM. As the figure shows, decision
points are represented as triangles, and variants as rectangles attached to them. The
figure also shows the five types of variability dependencies that can be used in
OVM to specify how variants of a product line must or can be selected: mandatory,
optional, alternative, requires, and excludes.
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• A mandatory variability dependency between a variation point and a variant
describes that this variant must always be selected when the variation point is
considered for the configuration at hand.

• An optional variability dependency between a variation point and a variant
describes that this variant can be selected but does not need to be selected.

• An alternative choice is a specialization of optional variability dependencies.
An alternative choice group comprises at least two variants that are related to
a variation point by optional variability dependencies. The [min, max] bounds
define that at least min and at most max variants can be selected for the product
at hand.

• Additional dependencies between variation points and variants, for example, to
enforce that two variants of different variation points cannot be selected together.

19.2.3 Industrial Case

In this section, we present our industrial case, from the automotive industry, that
corresponds to the electric parking brake (EPB) system by means of an OVM model,
as well as some of the problems encountered in the traditional configuration strategy
and observable on this particular model.

The orthogonal variability model enables the derivation of SysML models cov-
ering all system aspects from system requirements to physical implementation. The
systems engineering process requires that the engineering activities are performed
in a certain order, enabling documentation, traceability of assets and providing
deliverables at different project milestones. Our configuration strategy takes into
account two common scenarios:

• Following the systems engineering analysis phases, with partial configurations
for each phase. Each partial configuration has an impact on specific system model
items [15]. The main concern is to follow the systems engineering approach,
providing partial models for document generation at each project milestone.
However, a second concern is to minimize the number of steps to reach each
valid partial configuration.

• Direct (quick) configuration of a system model. In this case, the concern is to
minimize the number of steps required to reach the valid desired configuration.

In both of these cases, the traditional approach for an interactive configuration may
present the following problems: a non-valid configuration can be reached as a result
of the user sequence of choices, and the number of steps required to reach the
configuration may not be minimal and require extra time and effort from the user.

Furthermore, psychological studies [26] have shown that in a configuration
process of complex products users do not exactly know their preferences when
confronted with a set of alternatives, about which they do not possess solid previous
knowledge. This may lead to delays for the exploration of alternatives at certain
stages of the configuration process. It is particularly in this kind of situation that



www.manaraa.com

19 Recommendation Heuristics for Improving Product Line Configuration Processes 517

the approach presented in this chapter can useful. The OVM notation allows the
variability of this industrial example to be represented with a concrete syntax that
facilitates the understanding and presentation of this case of a complex system.
The Electric Parking Brake (EPB) system is a variation of the classical, purely
mechanical, parking brake that ensures vehicle immobilization when the driver
brings the vehicle to a full stop and leaves the vehicle. We have chosen this case
because it satisfies the following requirements: (1) it represents an industrial case of
reduced complexity; (2) it does not pose confidentiality concerns; and (3) it contains
enough variability for exploring our research questions.

Figure 19.2 presents the main variations that were identified in the design of this
system. The variability of the electric parking brake system is explained according to
the viewpoints specific to a systems engineering process: customer, context, design,
internal behavior, and physical architecture.

• Customer visible variability corresponds to the variability stemming from the
vehicle level by the product division. The EPB proposes three types of service:
Manual, Automatic, and Assisted.1 The Manual brake is controlled by the driver
either through the classical lever or a switch. The Automatic parking brake system
variant may enable or disable the brake itself depending on the situation: for
example, when the driver turns off the engine and leaves the vehicle, the parking
brake is activated. The Assisted brake brings extra functions that aid the driver
in other situations: such as assistance when starting the car on a slope. In all
operational scenarios, except for the manual variant, the system can decide to
lock the parking brake. This is, for instance, the case when the driver exits the
car, the engine is stopped, and the vehicle starts on a slope. Thus the behavior
of the system is given by the two variation points: BrakeLock and BrakeRelease,
where variants that involve automatic actions are mutually exclusive with the
Manual type of parking brake. Hill start assistance is also a customer option, but
the function can be allocated and implemented through different vehicle systems:
through the electric parking brake itself (EPBEnabled variant) or through the
classic braking system (ESCEnabled variant).

• The context viewpoint contains different facets of the system context, such as:
system boundary variability, enabling systems and vehicle environment. In the
EPB example, variants in the context refer to gearbox type. The gearbox and the
presence of certain types of trailers (VehicleTrailer variation point) have a direct
impact on the internal behavior of the EPB system. The presence of a trailer, for
example, may require the hill start assistance functionality to be disabled, or to
adapt to the new total weight conditions.

• The design alternatives viewpoint specifies design decisions that impact the
whole or parts of the technical solution. The design decisions viewpoint includes:
the main solution alternatives (ArchitectureDesignAlternatives), choices on how

1The variability presented here does not necessarily use the same names and expose the same
options as online vehicle catalogs.
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Fig. 19.2 OVM of the electric parking brake system
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Fig. 19.3 Main design alternatives of the electric parking brake system (PullerCable and Electri-
cActuator variants)

to distribute the effort among the EPB and the main hydraulic braking system
(ForceDistributionDesignAlternatives variation point), the decision on software
allocation to hardware (SoftwareAllocationDesignAlternatives variation point),
and the allocation of the slope angle detection function (TiltAngleFunctionAl-
location variation point). Allocation of this last function to a specific computer
would obviously require that the computer (ECU) already exists.

• The variability entailed by the system internal behavior viewpoint impacts the
states and transitions of the system physical and software components. In the
EPB, the braking strategy can vary depending on the deriving conditions. Each
strategy requires specific information: Comfort and Dynamic require vehicle
speed information (VSpeed) and the specific strategy for hill start assistance
requires that there is a tilt angle sensor. Braking pressure is monitored after
the vehicle has stopped for a certain amount of time (Temporary) for the single
DC motor, puller cable solution, and permanently monitored (Permanent) for
the other solutions

• The variability entailed by the physical architecture specifies variability in
component decomposition, through optional or replaceable components, as well
as physical interfaces variability between components. Physical variability of the
EPB consists in the presence of different means of applying the brake force:
electric actuators mounted on the calipers or single DC motor and puller cable
much like the traditional mechanical parking brake. Also, the type of sensors
available may vary depending on the configuration and needs.

In addition to variation points and dependencies, the variants’ attributes were
associated to the different variants, in order to specify supplementary needed
information regarding the impact of PL configuration on performance (braking
force dissymmetry, response time on brake), reuse (vehicle range coverage), or cost
increase in respect to a reference configuration of the system (extra engineering
cost). These attributes are numerical variables that play a role during the derivation
process and help the engineers make the right choices by assessing the impact
of their choices on the system configuration and as the basis for supplementary
constraints.

Figure 19.3 presents two examples of physical configurations of the EPB system.
The instance on the right corresponds to a “puller cable” technical solution (Archi-
tectureDesignAlternatives: PullerCable), while the instance on the left corresponds
to the solution based on “electric actuators” (ArchitectureDesignAlternatives:
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ElectricActuators). While system models can heavily rely on reuse for both of
these configurations, only physical designs based on modular structures can further
leverage the reuse of components in different configurations on this level.

19.3 Recommendation Heuristics in the Product Line
Configuration Process

In an industrial context, letting the customers express their requirements that they
want, while considering the constraints imposed by the product line model, entails
a cumbersome and error-prone configuration process. Evidence of these difficulties
are multiple. For instance, in Business-to-Consumer commerce (B2C) in France,
60 % of the shopping baskets in e-commerce are abandoned before purchase,
because the customer does not find a satisfactory configuration. The conversion
rate visitor/buyer rarely exceeds 15 %, according to the Fédération e-commerce et
vente à distance (FEVAD). This difficulty is even more critical when the e-catalog
contains a huge number of items, as is the case when the products to be sold
are highly customized (e.g., computers or vehicles). One possible answer to this
difficulty can be an interactive configuration process that recommends customers the
best configuration alternatives to follow. When configuration is done interactively,
the user specifies the characteristics of the product step-by-step according to
his requirements, thus, gradually shrinking the search space of the configuration
problem. This interactive configuration process is supported by a software tool
(called the configurator) that is intended to recommend to customers the best
configuration alternatives that lead them to a satisfiable product in a minimum
number of steps.

The main contributions of this chapter are a collection of heuristics that are
intended to (a) help customers specify the characteristics of their products step-by-
step according to their requirements, and (b) to avoid useless or inefficient decisions.
The collection of heuristics were designed to improve the configurators’ interactivity
and thereafter successfully contribute to a faster and less error-prone configuration
process. A detailed description of the implementation of these heuristics is presented
using Constraint Programming. This formalism was chosen because it can be imple-
mented in a straightforward way and because it can be used to formalize any product
line whatever notation was initially used to specify it [23,24]. The application of the
heuristics is demonstrated using our electric parking brake systems case.

19.3.1 Principle of Heuristics-Based Configuration

The objective of the application of heuristics to the configuration process is to
increase the chance of success and to reduce the configuration time: (1) either by

http://www.fevad.com
http://www.fevad.com
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Fig. 19.4 Configuration workflow for product line heuristics-based recommendation

reducing the number of configuration steps or (2) by optimizing the computation
time required by the solver to propagate configuration decisions.

Configuration is an interactive and iterative process. The user makes choices
by assigning values to configuration variables. A step in the configuration process
consists of a user choice and propagation of configuration decisions by the solver,
if the value is valid, or of going back to the previous configuration state otherwise.
Each value assignment can affect other variables. As a result, the order of value
assignments has an impact on the overall number of steps of the process. Finally,
the computation time of each configuration step is influenced by the complexity and
size of the product line model.

A generic configuration process iteration is presented in Fig. 19.4 as a flow of
activities. Activities (e.g., selection, transformation, decision making) are repre-
sented as triangles, while assets, used in the configuration process (e.g., product
line model, configuration sequence), are presented as rectangles. The asset may be
the input of an activity, if it is on the left of that activity, or the produced output if it
is placed on the right. Finally, the arrows link the graphical elements and point to the
direction of the activity flow. Each configuration iteration consists of the following
activities:

PLM transformation. The product line model, described using OVM, is trans-
formed to a constraint program. We use the GNU Prolog language [12] to
represent the constraint program and the GNU Prolog solver [12] as the engine
to solve it. The configurator consists of a frontend (e.g., online interface) and a
solver. The solver propagates the configuration decisions and ensures they are
valid with regard to the product line model. The transformation from OVM to
GNU Prolog, for the Electric Parking Brake case, is described in Sect. 19.3.2.

Heuristic selection. The user can change the heuristics taken into consideration
for future configuration steps, in respect to the desired objective. The appropriate
context and advantages for each heuristic are discussed in Sect. 19.5.

Variable prioritization. The configurator recommends variables to be configured,
ordered in respect to the applied heuristics.

User choices. The user can follow the recommendations or can continue to assign
values to other variables of interest.
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19.3.2 Representing Orthogonal Variability Models as
Constraint Programs

Alternative choices with cardinalities < m::n >, optional, mandatory, requires and
excludes dependencies are represented as constraint programs as follows (further
details are provided in Mazo et al. [23]).

Alternative Choices. An alternative choice is a dependency between a variation
point and a collection of variants. Variation points are represented in constraint
programming as Boolean variables and variants are represented as finite domain
integers. The semantics of this dependency can be represented by the following
collection of GNU Prolog constraints:

.Variant1 > 0/ <D> Bool_Variant1 ;

.Varianti > 0/ <D> Bool_Varianti ;

VariationPoint �m D< Bool_Variant1 C : : :C Bool_Varianti ;

Bool_Variant1 C : : :C Bool_Varianti D< VariationPoint � n :

For instance, the < 1::1 > alternative choice of the variation point ParkingBrake-
Service is represented in GNU Prolog as follows:

.PBSManual > 0/ <D> Bool_PBSManual ;

.PBSAutomatic > 0/ <D> Bool_PBSAutomatic ;

.PBSAssistance > 0/ <D> Bool_PBSAssistance ;

ParkingBrakeService D Bool_PBSManual C Bool_PBSAutomatic

C Bool_PBSAssistance :

Optional Dependencies. Optional dependencies relate variants and variation
points in the following manner:

.Variant > 0/ DD> VariationPoint :

For instance, the optional dependency between the variation point ClutchPedal and
the variant ClutchPres is represented by the GNU Prolog constraint:

.ClutchPres > 0/ DD> ClutchPedal :

Mandatory Dependencies. Mandatory dependencies relate variants and variation
points in the following manner:

.Variant > 0/ <D> VariationPoint :
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For instance, VehicleWeight should be configured each time its parent variation point
(VehicleProperties) is configured in a product. The semantics of this dependency can
be represented as follows in GNU Prolog:

.VehicleWeight > 0/ <D> VehicleProperties

Requires-Type Dependencies. When a Variant1 requires a Variant2, the semantics
of this kind of dependencies can be represented by the following constraint:

.Variant1 > 0/ DD> .Variant2 > 0/ :

When a VariationPoint1 requires a VariationPoint2:

VariantPoint1 DD> VariationPoint2 :

For instance, when the variant IntegratedDownsizedCalipers is selected in a config-
uration, the variant ElectricActuator should also be selected. This can be represented
as follows in GNU Prolog:

.IntegratedDownsizedCalipers > 0/ DD> .ElectricActuator > 0/ :

Excludes-Type Dependencies. When two variants (Variant1 and Variant2) exclude
each other, the semantics of this kind of dependencies can be represented as follows:

Variant1 � Variant2 D 0 :

When two variation points (VariationPoint1 and VariationPoint2) exclude each
other:

VariationPoint1 � VariationPoint2 D 0 :

For instance, the fact that BLOnSystemDecision and PBSManual cannot be together
in the same product is represented by the following constraint in GNU Prolog:

BLOnSystemDecision � PBSManual D 0 :

19.3.3 Configuration Heuristics

Configuration of variability models enables the realization of consistent system
specifications from requirements at the domain level. However, as diversity plays
a major role in automotive industry competitiveness, it is often difficult to manage
the large number of variations that a vehicle system includes.
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While users can express their priorities in a free configuration order, the
configurator should choose the order that best optimizes its computational task and
complete the configuration of the product line models based on the users decisions.
The configurator completeness should ensure that no solutions are lost. Besides,
backtrack-freeness [17] should guarantee that the configurator only offers decision
alternatives for which solutions remain, and the configurator should guarantee a
short response time compatible with an interactive usage (e.g., with a web-based
configuration). By defining a set of heuristics for product line configuration we
intend to address the issue of decision ordering in order to allow the user to have
access to pertinent choices and optimize the number of steps required to reach a
complete configuration and the response time of the solver. The heuristics presented
here are:

Heuristic 1. Variables with the smallest domain first
Heuristic 2. The most constrained variables first
Heuristic 3. Variables appearing in most products first
Heuristic 4. Automatic completion when there is no choice
Heuristic 5. Variables required by the latest configured variable first
Heuristic 6. Variables that split the problem space in two first

It is worth noting that there is no predefined order to use the heuristics. Indeed,
the configuration heuristics that can be suitable to be used at configuration time t

can be different from the configuration heuristics that the user will want to use at
t C 1. There are several heuristics that the user can select together for one or several
configuration steps. In the case that users select several configuration heuristics, the
configurator will propose a collection of candidate variables to configure according
to the selected heuristics. For instance, if the users want to configure first the
variables with the smallest domain (Heuristic 1) and the variables with the largest
variability factor (Heuristic 3), the configurator will recommend them to configure
the variables with the smallest domain decreasingly sorted by the variability factor.
These heuristics are discussed below.

Heuristic 1: Variables with the Smallest Domain First

Principle. This heuristic recommends to choose first the variable with the smallest
domain. The domain of a variable is the set of possible values that the variable can
take according to its domain definition and the constraints in which the variable is
involved. This strategy is known as “first fail principle” [6] and can be explained as
“to succeed, try first where you are most likely to fail.”

Rationale. This could be counter-intuitive since configuring first the variable with
the biggest domain reduce the search space the most. However, this decreases the
possibility of obtaining a valid product at the end because that constrains the solver’s
possibilities to choice a particular domain value that satisfies the set of constraints.
Thus, even if setting first the variables with the largest domains reduces faster the
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solution space to be analyzed by the solver than setting first variables with small
domains, it also decrease the possibility of having a valid product at the end of the
configuration process. Of course, we prefer the latter choice. If all the variables
have the same number of domain values (e.g., all variables are Boolean), the user
can choose other heuristics to improve the configuration process.

Example. For instance, let us consider the variables:

V1 DForceDistributionDesignAlternatives and V2 DElectricalActionComponents :

They have enumeration domains with different cardinalities, where card.V1/ >

card.V2/, thus the second variable has the smaller. The choices associated to the first
variable decide about the way brake force generation should be shared between the
electric parking brake electrical actuators and the classic vehicle hydraulic system.
The second variable decides about the physical architecture: single DC motor or
two electric actuators attached to the vehicle calipers. The solver should propose
variable ElectricalActionComponents first, according to the proposed heuristic.

Advantages. This heuristic avoids unnecessary evaluations (e.g., when variable V2

is set to a particular value of its domain, the solver does not need to check for other
values of V2) and increases the possibility to succeed the configuration process (i.e.,
configuring first the variables where the constraint program is most likely to fail, we
increase the possibilities of the solver to succeed).

Heuristic 2: The Most Constrained Variables First

Principle. Another heuristic that can be applied when all variables have the same
number of values is to choose the variable that participates in the largest number
of constraints (in the absence of more specific information on which constraints are
likely to be difficult to satisfy, for instance). This heuristic follows also the principle
of dealing with hard cases first.

Rationale. In industrial languages like constraint networks [3] where there are no
root artifacts to guide the configuration process, this heuristic allows identifying the
variables that mostly reduce the number of choices in a configuration process.

Example. In the EPB model, the PullerCable variant is one of the most constrained
in this model, being linked to the way force is distributed among braking systems
(ForceDistributionDesignAlternatives), internal system behavior (ForceMonitorO-
nEngineStop) and physical implementation (DC_motor). In consequence, it reduces
other choices in the configuration process, directly linked to the initial variable.

Advantages. By setting first the variable related with the largest number of other
variables the solver would automatically propagate the user’s choice to the largest
number of other variables. In that way the space of the solution is considerably
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reduced after each choice, which reduces the number of configuration steps (user’s
choices) and the average configuration time (solver’s inference time).

Heuristic 3: Variables Appearing in Most Products First

Principle. This heuristic proposes configuring first the variables that have an
impact on all potential products. To avoid the generation of all products of the PL,
which is usually impossible in very large models [4, 23], we propose two steps:
(1) configure first the core variables and (2) configure the rest of variables once
ordered according to their impact on the solution space. To implement the first step,
we use the computing the core elements operation that is fully automated in the
VariaMos tool [22]. To avoid generation of all solutions in order to calculate the
core elements as proposed by Schneeweiss and Hofstedt [29], we evaluate if each
variable can take the null value (e.g., the 0 value on Boolean variables) in at least one
correct configuration. If a variable cannot take its null value, the variable does not
become part of the core variables of the product line model because this can never
be omitted from any product. To know if a variable can take the null value in a valid
configuration takes only few milliseconds even in the largest product line models
available in literature. Details of this algorithm, its improvements, implementation,
and evaluation can be found in Mazo et al. [24]. The second step is implemented
thanks to the operation of computing the variability factor of a given variable, and
fully automated in our tool VariaMos [22]. This variability factor of a given variable
corresponds to the ratio between the number of products in which the variable is
present and the number of products represented in the product line model.

Rationale. The heuristic can be applied when the user needs to reach a valid
configuration with as little input as possible. Fixing the values of the core variables
(usually approximately 2/3 of the variables of the product line model [8]) decreases
the size of the problem space in the same proportion, avoiding unnecessary input
from the user. This also makes feasible the calculation of the variability factor of the
remaining variables. The variables with a higher variability factor reduce the path to
a valid product and the need for user input.

Example. In products where the customer requirements do not include assistance
(ParkingBrakeService D Assistance) from the system, other than for parking brake
situations, the option for hill start assistance and for disabling the hill start assistant
function are excluded. As a consequence, the definition of these variables does not
appear in all products, and according to this heuristic should not be proposed before
core variables.

Advantages. This heuristic is useful because (1) it avoids wrong users’ configu-
rations in the sense that core variables cannot be configured with null values, and
(2) the order proposed in this technique decreases the solver’s inference in finding
satisfactory configurations.
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Heuristic 4: Automatic Completion When There Is No Choice

Principle. This heuristic provides a mechanism to automatically complete the
configuration of variables where only one value of their domain is possible.

Rationale. Due to the fact that the aim is to eliminate, in the domains of variables
yet to be instantiated, the values that are not consistent with the current instantiation,
this heuristic also works when a variable has several values on its domain but only
one is valid. This heuristic is automatically provided by most constraint solvers
available on the market, with at least, three algorithms that implement it: Forward
Checking, Partial Look-Ahead, and Full Look-Ahead.

Example. We consider variable V1 D HillStartAssistance, V2 D BrakeLock and
V3 D ParkingBrakeService. Setting the values V1 D EPBEnabled and V2 D
OnSystemDecision excludes all values for V3, except V3 D Automatic, in which
case this single possible value should be selected automatically.

Advantage. The automatic assignment of values to variables, once there are no
more alternative solutions, avoids the possibility of invalid configurations due to
wrong values requested by the user. Therefore, it contributes to the success of the
configuration process.

Heuristic 5: Variables Required by the Latest Configured Variable First

Principle. Another heuristic consists in choosing the variable that has the largest
number of constraints with the past-configured variables.

Rationale. This heuristic has a particular application during configuration of
engineering artifacts, where choices often represent engineering decisions linked
by causality relations. A choice may not be reached before a previous choice has
been performed. In this particular context, following related variables (that serve
for the reuse of engineering artifacts) would mean advancing in the design space
towards a more detailed description of the system being configured.

Example. In the case of the EPB system, we can find logical implications that
have their origin in technical constraints or problem solving logic. For example,
the system needs to be able to disable the hill start assistant function (HSADis-
ableFunction), if a trailer is used (when the function is not able to adapt to the
change of weight of the vehicle). In this case it is convenient to propose variable
HSADisableFunction once variable VehicleTrailer D TrailerW1 has been set, both
for the user (logical flow of ideas), but also to avoid potential future conflicts in the
configuration.

Advantages. This heuristic allows conflicts to be identified as soon as possible
(with regards to the number of configuration steps) in a configuration process.
Hence, this increases the possibility to fix the configuration conflicts and the
possibility to succeed in the configuration process.
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Heuristic 6: Variables That Split the Problem Space in Two First

Principle. Breaking a problem into sub-problems is a powerful tool in many
domains. This heuristic consists in setting first the variables splitting the problem
space in two. Due to the fact that these variables have most potential to reduce
the solution space, the application of this heuristic naturally reduces the number of
configuration choices.

Rationale. This is due to the fact that after one choice, the solver will have a
reduced solution space to exam and the user will have fewer configurations to do.
Several product line modeling languages (e.g., Feature models) are inspired by this
principle and propose the use of a root element with two of more choices related by
OR or XOR operators that divide the problem space in branches that can be easily
removed from the solution space. To achieve this we need to search for variables
that divide the problem space in roughly similar parts, searching the decision trees
have almost the same depth for each of the values of the variable.

Example. In the case of the parking brake system, the choice concerning the
presence of the hill start assistance function splits the decision tree in roughly similar
parts.

Advantages. Setting first the variables that break the problem in two equal parts,
reduces the computation time of future choices and increases the chances of
reaching a completely defined product in a reduced number of steps.

19.4 Application to the Configuration of a Parking Brake
System

One particular question that can be raised about the configuration heuristics that
have been presented in this chapter is are they useful? Although only long-
term experience will provide a definitive answer to this question, one might be
interested in looking for its implementation and its application in a real case. To
do that, we have (1) implemented our collection of heuristics in the constraint logic
programming solver GNU Prolog [12], and (2) applied these heuristics in typical
configuration processes of our industrial case. For each heuristic, we measure the
time required by the solver to generate X products; then, we compare these results
with the ones obtained when we do not use any heuristics or use a contra-sense
approach in the same configuration process. The industrial case was developed in
the broader context of introducing product line techniques in model based systems
engineering [14]. Our electric parking brake (EPB) systems model (Fig. 19.2) is
represented by means of the OVM notation [27] and is composed of 19 variation
points, 46 variants, 16 alternative choices, 1 mandatory and 7 optional variability
dependencies, and 28 additional dependencies (21 requires-type, 5 excludes-type,
and 2 non-classified dependencies [23]). To present the feasibility of our approach
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and conclude what heuristics should be recommended for use during a product
line configuration process, we first transform our EPB model into an automatically
exploitable language, then we explain how to implement each heuristic and we
compare the results gathered from their application to our industrial case.

Once our EPB model is represented as a GNU Prolog constraint program, we can
apply our collection of heuristics to configure different EPB systems and measure
the results obtained each time and compare them with the results obtained when no
heuristic is used.

Heuristic 1: Variables with the Smallest Domain First

The GNU Prolog predicate fd_labeling(Vars, Options) assigns a value to
each variable of the list Vars according to the list of labeling options given
by Options. Vars can be also a single finite domain variable. This predicate
is re-executable on backtracking. Options is an optional list of labeling options
that specifies the heuristic to select the variable to enumerate. When no option is
specified, the solver selects the leftmost variable in the list of variables (Vars) to
enumerate in the configuration process.

This heuristic is already implemented in the GNU Prolog solver and can be used
in a configuration process by means of the following predicate:

fd_labeling(Vars ,[variable_method(ff)]) ,

where Vars is the list of variables of the constraint program (variation points and
variants of our model) and variable_method(ff) is the GNU Prolog predicate
offered by the solver to call the ff (first fail) heuristic in the current configuration
process (i.e., in the current fd_labeling).

Heuristic 2: The Most Constrained Variables First

To implement Heuristic 2 in GNU Prolog, we just need to sort the list of variables
(Vars), where the first variables in the list are those that are more constrained, and
then use the predicate fd_labeling(Vars) in our configuration process. In our
industrial case,

Vars = [PullerCable, ESPECU, PBSManual, ElectricActuator,
HillStartAssistance, Static, TrailerW1, Permanent,
DownsizedAndESPDynamicBraking, VSpeed, HSADisableFunction,
TraditionalPB, DCMotor, DownsizedAndExtratorqueESP,
AuxiliaryBrakeRelease, EU, BROnSystemDecision,
BROnSystemDecision, TiltSensorIn1, TiltSensorIn2, TrailerW2,
EPBEnabled, Comfort, CalipserWithIntegr, EActuator,
PBSAssistance, FullEPB, Temporary, ClutchPres, DedicatedECU,
Dynamic, BLOnSystemDecision, IntegratedDownsizedCalipers,
GBAutomatic, \dots]

all the other variables appear one time in the constraints of the model.
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Heuristic 3: Variables Appearing in Most Products First

Considering the explanation given, to implement Heuristic 3 in GNU Prolog we
just need to calculate the variability factor of each variable of the model (this
function is fully implemented in VariaMos [22]) and sort the list of variables (Vars)
according to the variability factor, being the first on the list those variables that
have largest variability factor. Then, we use the predicate fd_labeling(Vars) in
our configuration process to constraint the solver to use first the variables of
Vars with the largest variability factor in the configuration process. The ten
variables with largest variability factor in our industrial case are: ClutchPosition,
DoorPosition, InputInformation, Static, ElectricalActionComponents,
DCMotor, BrakingStrategy, VehicleTrailer, TrailerW2, and ForceMonitor

OnEngineStop.

Heuristic 4: Automatic Completion When There Is No choice

Partial lookahead [33] is about propagation on the min and max values of the
variables’ domains. Partial lookahead is configured by default in GNU Prolog. For
instance, given the following constraint expressed in GNU Prolog: X#= 2*Y + 3,

X#< 10 (where “#” before each constraint symbol forces the solver to apply a
partial look-ahead propagation technique in the corresponding constraint and “,”
means a logic AND) the solver will define the following domain for both variables
involved: X D .3::9/ and Y D .0::3/. Indeed, when the solver uses the partial
look-ahead propagation technique, it only considers the border values to define the
new domain of each variable after propagation. On the contrary, full lookahead [33]
allows operations about the whole domain in order to also propagate the “holes”.
Thus, if we use this technique in our constraint, that is, X#= 2*Y + 3, X#< 10 the
solver will define a more precise domain: X D .3 W 5 W 7 W 9/ and Y D .0::3/. It is
worth noting that to use full lookahead in GNU Prolog, we just put “#” at the end of
operations that will use full propagation.

Heuristic 5: Variables Required by the Latest Configured Variable First

Because of this heuristic helps identify configuration conflicts as soon as possible
in an interactive configuration process, it cannot be implemented by means of static
list of variables sorted in a certain order as we did for the other ones. Conflicts that
can be identified with this heuristic look like “a configuration with TraditionalBP

and an DownsizedAndESPDynamicBraking in a same product is not possible”. This
kind of configuration conflicts can, in certain situations, be avoided if people who
configure the variant DownsizedAndESPDynamicBraking follow the requirements
of this variant (e.g., the variant ESP_ECU) and not just the intuition or hazard to define
the next variables to configure. Thus, the use of this heuristic is highly recommended
to use in interactive and guided configuration environments.
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Heuristic 6: Variables That Split the Problem Space in Two First

This heuristic can be implemented as follows. First, it is necessary to find variables
in which a configuration dichotomy must be done, that is, assuming that one
variable, belonging to the collection of variables to be configured in a certain
configuration stage has a domain value of 10, the dichotomy consists of computing
the number of results when the variable is less than 5, computing the number
of results when the variable is greater than or equal to 5, compare both results
and classify this variable according to its ability to divide the solution space. The
difficulty while implementing this heuristic is to build this list of variables at each
configuration step. A good choice in the context of product line models that are
represented by graph like or tree like formalisms (e.g., Feature Models) is to begin
the configuration process by the root feature and then navigate the tree structure
to define what are the variables that most divide the solution space of the product
line being configured. Since our industrial case is modeled in the OVM notation,
where the notion of a single root does not exist. We will then need to consider all
the variation points of our EPB model as roots. Thus, to implement this heuristic
when the EPB model is represented as a GNU Prolog constraint program, the list L
of variables corresponding to the constraint program is constituted in the following
way: L D ŒVP1;VP2; : : : ;VPn; V1; V2; : : : ; Vn� where the collection of variables
VP1;VP2; : : : ;VPn corresponding to the variation points of the EPB model are
placed at the beginning of the list, and the collection of variables V1; V2; : : : ; Vn

corresponding to the variations of the model are placed at the end of the list. One
or several of these decision points can be configured from the beginning of the
configuration process by means of a partial configuration and the rest will be left
to be configured by the solver (in the order defined by the list L) through the
mechanism of propagation. In our industrial case, the configuration list L should
look like

L D ŒParkingBrakeService, BrakeLock, BrakeRelease,
HillStartAssistance, HSADisableFunction, RegulationZone,
GearBox, VehicleTrailer, ArchitectureDesignAlternatives,
ForceDistributionDesignAlternatives,
SoftwareAllocationDesignAlternatives,
TiltAngleFunctionAllocation, ElectricalActionComponents,
BrakingStrategy, ForceMonitorOnEngineStop, InputInformation,
: : : � .

The rest of L is composed of variables corresponding to the variants of our OVM
industrial case.

19.5 Discussion

We used two partial configurations to test our approach. The first partial
configuration gives a value to the variables with the largest domain: DCMotor,
Static, and FullEPB (DCMotor #= 10, Static #= 50, FullEPB #= 1000).
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The second partial configuration used to test our approach is typical for
vehicles equipped with an automatic parking brake (ParkingBrakeService
#= 1, BrakeRelease #= 1, ForceDistributionDesignAlternatives #= 1,
HSAAutomatic #= 0, GBAutomatic #= 1, DCMotor #= 10, Comfort #= 90,
FullEPB #= 1000).

We used the industrial case (see Sect. 19.2.3) to test our approach and get some
insight on the improvements brought to the configuration process, by using the
heuristics presented in this chapter. In order to do that, we used a typical configura-
tion in automotive industry, where variables ParkingBrakeService, BrakeRelease,
ForceDistribution, and GBAutomatic are set to 1 to indicate that the reusable
components corresponding to these variables are present into the cars that we intend
to configure. In addition, the variable HSAAutomatic is set to 0 to indicate that
the design alternative for disabling the hill start assistance will be not present in
the product(s) that we intend to configure. Also, variable DCMotor is set to 10 to
indicate the maximum power for the electric motor (design decisions), Comfort is
set to 10 to indicate that when the system should switch to this braking strategy
while the vehicle is in motion (design decisions regarding system behavior), and
FullEPB is set to 1,000 for the maximum allowed braking force.

Table 19.1 summarizes the results and provides comments on each heuristic. We
learned from the tests that Heuristics 1 (variables with the smallest domain first) and
3 (variables appearing in the most products first) are very useful when users need to
get a fast feedback from the solver (this is the case, for instance, of online product
configurators). In particular, we recommend to use Heuristic 1 because, in our case,
it allows to reduce the time spend by the solver to propagate the configuration
choices (feedback time). Also, we recommend using Heuristic 3 because, in our
case, it allowed to reduce by 10 %, on average, the feedback time.

Combining Heuristics 1 and 3 reduces even more the feedback time, which
improves a lot the configuration process of large product line models. To be
precise, this combination reduced, in our industrial case, by fourth the feedback
time compared with the case when no heuristic is used in the configuration process.
Nevertheless, we also recommend using Heuristic 2 combined with Heuristic 1 to
reduce the computation time of the solver by half (on average, in our running case)
the time spend by the solver to propagate our configuration preferences compared
with the case where no heuristic is chosen.

The use of Heuristic 4 with application of the full lookahead algorithm (used by
default in GNU Prolog to implement Heuristic 4) takes much more time than all
the other tests; however, the configurations proposed by the solver after propagation
of the configuration choices on the product line model are more accurate. Thus,
using this algorithm, the solver never proposes an option that in reality the user
cannot select later. This characteristic is very important in an iterative product
line configuration process where the idea is to prevent false expectations about
configurations that will in reality be impossible. Thus, we recommend the use of
Heuristic 4 in configuration process where prevent the user mistake, his frustration
and the subsequent abandon of the process is a more important issue compared with
the long time spend by the solver to effectuate propagation and give a feedback.
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Table 19.1 Advantages of heuristics after experiments

H Advantages When to use Comments

H1

• Avoids unnecessary
evaluations

• Reduces the solver
inference time

• Increases the success
rate of the configura-
tion

• The size of the domain of
variables varies a lot

• The user needs a fast feed-
back from the solver (e.g.,
configurators on the Inter-
net)

The solver reduces the
time spent to propa-
gate the configuration
choices by 50% on aver-
age. Further investigation
is needed to understand
how much this heuristic
increases the success rate
of the configuration.

H2
• Reduces number of

configuration steps

• The PL modeling technique
does not involve the pres-
ence of root artifacts (e.g.,
OVM)

It should theoretically
reduce the number of
configuration steps, but
further research is nec-
essary to understand the
extent of its impact.

H3

• Avoids wrong con-
figuration of core
variables

• Decreases the time
needed by a solver to
configure products

• The user requirement is to
reach a valid configuration
fast

• The users don’t have any
other preferences regarding
the configuration sequence

• The user needs a fast feed-
back from the solver (e.g.,
configurators on the Inter-
net)

The solver reduces the
time spent to propagate
the configuration choices
by 10% on average.

H4

• Increases the success
rate of the configura-
tion

• The solver used to automate
the constraint propagation
has built-in support

• In all the interactive config-
urators to prevent input of
erroneous values (because
of the invalid user choices)

• Preventing user frustration
is more important than the
computation time (e.g.,
some Internet applications)

By using the full-look
ahead algorithm to im-
plement this heuristic,
the solver (i) never pro-
poses, to users, options
that in reality they can-
not select later, and (ii)
increases the time spend
to propagate the configu-
ration choices by 37% on
average.

H5

• Allows identifying
conflicts as soon as
possible

• Increases the success
rate of the config-
uration (by fixing
existing conflicts)

• Appropriate in engineering,
where there is causality
relation between artifacts

• Follows an existing, im-
plicit configuration se-
quence, related to constraint
dependencies

The experiments con-
firm that this heuristic:
(i) guides the user to con-
tinue the configuration
process when no other
preference exists, and (ii)
enables testing the con-
figurations at design-time
of the PL model.

H6

• Reduces the compu-
tation time of future
configuration choices

• Increases the chances
of reaching a com-
pletely defined prod-
uct in a reduced
number of steps

• The user requirement is to
reach a valid configuration
with a minimum number of
choices

• The users don’t have any
other preferences regarding
the configuration sequence

This heuristic reduces
the feedback time of the
solver by 8% on average.
Further research is neces-
sary to know how much
the number of configura-
tion steps is reduced.
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From a usability point of view, the experiment shows that Heuristic 5 is useful in
two cases: (1) to guide the users to continue the configuration process when they do
not know how to continue the configuration process (i.e., they do not know which
variables to consider next in the configuration process), and (2) to test configurations
at design-time when engineers are calibrating the product line model. Heuristic
5 recommend setting first the variables required by the latest configured variable
and in that way it helps identifying configuration conflicts as soon as possible in a
configuration process (and not to reduce time spent in configuration as Heuristics 1–
3). Heuristic 5 makes sense when it is applied in an interactive configuration process
to recommend users the next variables to configure without loosing the configuration
sequence.

Our experiment also shows us that Heuristic 6 (variables that split the problem
space in two first) only reduces the feedback time by 8 % on average. This heuristic
is implicit in the tree-like configuration processes like the one used by people that
guide the configuration process by a feature-like product line model [20]. Even
if this heuristic allows us to structure the product line configuration processes by
means of a predefined order, this is not always the best strategy (in terms of time
and accuracy) to guide the configuration processes of industrial (often very large)
product line models.

In our particular industrial case, we recommend to use Heuristic 3 combined with
Heuristic 1 in order to reduce the computation time of the solver in the configuration
process because this combination reduces by fourth the computation time compared
with the case when no heuristics are used. Application of Heuristic 1 alone is
also a good recommendation to improve computing time in our industrial product
line configuration process. In that regards, we also recommend to use Heuristic 2
combined with Heuristic 1 to reduce the computation time of the solver because it is
reduced by half when these two heuristics are applied with an initial configuration
of the most restrictive variables. It is worth noting that the use of Heuristic 4 with
application of the Full Look-Ahead algorithm has taken much more time than all
the other tests; however, partial configurations proposed by the solver are more
accurate, that is, using this algorithm, the solver never proposes an option that
the user cannot select later. This characteristic is very important in an iterative
product line configuration process where the idea is to prevent false expectations
about impossible configurations and thus prevent user mistakes, frustration and the
subsequent abandon of the process. The other heuristics should be further evaluated
to determine in which configuration situations and in which kind of models they
should be recommended to use.

19.6 Conclusion

The purpose of the heuristics was to improve the configuration process by (1)
reducing the number of configuration steps or (2) reducing the computation time
required by the solver to test the validity of the product line. The configuration
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of variables is done interactively by the user. Thus the order depends on their
preference. By prioritizing choices, and recommending certain configuration vari-
ables before others, it is possible to improve these two aspects of the configuration
process.

However, other questions may be raised: Which heuristics are better to improve
the quality and pertinence of the solutions? Against what other criteria can we
compare the collection of heuristics presented in this chapter? How to classify
the heuristics according to their pertinence in certain situations? What kind of
systematic recommendation should be presented to a user during a product line
configuration process? How to apply and even combine the collection of heuristics
presented in this chapter, in an interactive and incremental configuration process?
In conclusion, the application of these heuristics on other product line models,
specified with different formalisms can be implemented using the same principles,
but may need further evaluation.
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Glossary

Abstract syntax tree The syntactic structure of source code represented as a graph
(specifically, as a tree) in which vertices represent syntactic entities and edges
represent the containment relationship. As syntax is language-specific, abstract
syntax trees are also language-specific. A concrete syntax tree (or parse tree)
is a similar representation constructed during the parsing of source code, e.g.,
by a compiler; it will contain redundant information and will fail to distinguish
structures that differ due to semantic context. In software engineering, all such
representations are typically referred to as abstract syntax trees, without this
differentiation.

Accuracy [Within information retrieval] For binary classification of items, the
percentage of the items available that are either correctly recommended or
correctly not recommended. It can equivalently be interpreted as a probability,
rather than a ratio. The measure is defined as

TP C TN

TP C TN C FP C FN
I

see confusion matrix for the definition of these quantities.
[Within science and engineering generally] The degree of closeness of measure-
ments of a quantity to that quantity’s actual value. Compare precision.

Adaptability A property of a system that indicates its ability to adapt automatically
to changing conditions.

Adaptivity See adaptability.
Anomaly detection A data mining technique in which items are detected that do

not conform to other patterns in the data, or in which patterns are detected that
do not conform to expected patterns.

Antecedent See association rule.
Application programming interface The specification of how external agents

should access functionality programmatically.
API See application programming interface.
Argument See validity [within mathematics].

M.P. Robillard et al. (eds.), Recommendation Systems in Software Engineering,
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Association rule A relation between two sets of items (itemsets), called the
antecedents and consequents, in which the presence (equivalently, their truth,
their relevance, etc.) of the antecedents implies the presence of the consequents.

Association rule mining Any mechanical process in which association rules are
inferred within a dataset. Such a process operates atop a finite set of real data, in
which transactions occur involving multiple items; if the same items frequently
occur together, an association rule can be inferred. As the inferences of such a
process may be false and may need to deal with anomalous cases, two concepts
can be used in considering the quality of the mined rules: support and confidence.
The support for an itemset is defined as the proportion of commits that contain
the itemset. The confidence of an association rule is defined as the proportion of
commits in which the antecedent is true for which the rule is correct, and hence
the consequent is also true.

AST See abstract syntax tree.
Attribute A characteristic of a class of entities, whose specific value sometimes

varies between instances of the class. In some circumstances, the instances
themselves are described as possessing individual attributes.

Availability The ability of a user to obtain or access a system. This may be affected
by factors such as system load, network connections, or the monetary cost of
accessing the system.

Balanced F-score See F-measure.
Benchmark A standardized point of reference for a measurement.
Benchmarking The process of comparing something against standardized points

of references in order to identify a best practice.
Bias The tendency to preferentially produce an outcome despite the existence of

alternatives that are equally or more valid. This results in a systematic error in
empirical data. Threats to validity can produce bias.

Binary classification See classification.
Bug See issue.
Bug report See issue report.
Case study A descriptive or explanatory analysis of an instance of a situation or

phenomenon, useful as an exemplar of that instance and for the generation of
hypotheses about other instances.

Changeset See commit.
Classification The assignment of items to two or more sets. Classification refers to

both the process by which the assignment is created and the result. The special
case of binary classification utilizes only two sets that are typically called true
and false, with reference to whether the items in them are deemed relevant or not
in some context. Comparison of actual classifications (arising from some form of
real-world knowledge) and predicted classifications (arising from a mechanical
interpretation of a model, called a classifier, such as a recommendation system)
is an important means of assessing the quality of a classifier. Note that such an
assessment may be invalid if the assumptions of the actual classifications are
based on false premises. See confusion matrix.

Classifier See classification.
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Clickable link A kind of navigation aid in which hypertext links are displayed,
e.g., in an integrated development environment to allow the user to jump directly
to corresponding code.

Cluster analysis The task of partitioning a set such that the items within a partition
(called a cluster) are more similar in a defined sense than items in different
partitions. It is an important method in exploratory data mining.

Cold start problem An issue arises when a recommendation system requires data
to make its recommendations, e.g., extracted from a historical repository, but no
such data yet exists.

Collaborative filtering A technique for generating recommendations in which the
similarity of opinions of agents on a set of existing issues is used to predict the
similarity of opinions of those agents on other issues. Social tagging, in which
users label items as interesting, liked, recommended, etc., is one such technique.

Commit [Within RSSEs] A set of resources whose changes are added to a version
control system together. For version control systems that do not support explicit
commits of multiple resources, an inferred commit can be reconstructed where
individually committed resources possess the same author and comment meta-
data, and the timestamps are in close proximity. Note that commit and changeset
are synonymous under most situations, except where a distinction is needed
between the resources changed contemporaneously and the resources added to
a version control system together (e.g., when the author of the changeset differs
from the author of the commit).
[Within data management more generally] A set of tentative changes that have
been made permanent, typically at the end of a transaction.

Confidence See association rule mining.
Configuration An arrangement of parts and/or their parametrization by concrete

values to obtain specific, well-defined instances that are interrelated in a well-
defined manner.

Confusion matrix A means of categorizing the correctness of the mechanical
classifications of a set of items. Confusion matrices are usually 2 � 2 (for
binary classification), though larger sizes and higher dimensionality are both
possible. In both dimensions of the table are listed the possible classifications
of the items under consideration; one dimension represents the actual or true
classifications while the other represents the predicted or expected classifications
from a classifier (e.g., a recommendation system). Each cell of the table records
the number of items that have the corresponding combination of predicted and
actual classifications. A perfect classifier will always agree with the actual
classifications. In the special case of binary classification, the four cells of the
table are given special names. True positive items TP are those that are correctly
predicted by the classifier as true (equivalently, as yes, on, OK, of interest,
etc.); true negative items TN are correctly predicted as false (equivalently, as
no, off, not OK, not of interest, etc.). Cases where the classifier disagrees with
reality are termed false positives FP (the classifier predicts true, but the actual
classification is false) and false negatives FN (the classifier predicts false, but
the actual classification is true). In many circumstances, the multiple values of
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the confusion matrix are replaced by a smaller set of measures that combine
the individual cell values in various ways; note that this replacement necessarily
loses information. In statistics, false positives are known as type I errors, and
false negatives as type II errors. See precision, recall, F-measure, accuracy, false
negative rate.

Consequent See association rule.
Content-based recommendation system A recommendation system that makes

recommendations based on items’ content and profiles of users’ interests.
Context The situation in which a system operates. The sense is usually limited

to what is both visible and deemed relevant. Thus, a context could involve the
physical location of a device, the characteristics of a task, the goals of a user, etc.

Context awareness A property describing a system that can sense its context and
react accordingly.

Corpus A large collection of examples, systems, or other entities from which
patterns can be inferred or recommendations can be drawn.

Correctness Usually, an imprecise term used in a situation where an item can be
assessed as “right” or “wrong” (or sometimes as a fuzzy, intermediate value) to
indicate the property of being “right.” It implies that an independent means of this
assessment is available that possesses greater validity if not absolute validity.

Coverage The percentage of items available to a recommendation system for
which it is capable of making recommendations.

Critiquing-based recommendation system A knowledge-based recommenda-
tion system that supports a simple form of articulating preferences (e.g., higher
performance, lower price, etc.).

Cross-validation A technique for model validation in which a set of pairs of
queries and recommendations are repeatedly partitioned into training and test
data, and the performance of the model is characterized over the different
partitions. Variations exist for selecting the partitions, such as k-fold cross-
validation, in which the dataset is partitioned into k equal sized subsamples;
each subsample is then used as the validation data against which to evaluate the
model that has been trained on the other k � 1 subsamples. A related idea is
k-tail evaluation, in which a sequence of data is partitioned into a suffix of k
data items and a prefix of the remainder; the prefix is used as the training set and
the suffix is used as the testing set. k-tail evaluation has less statistical validity,
as the same data sequence would be repeatedly partitioned, leading to a lack of
independence.

Customization The process of adaptation of an item for the sake of accommodat-
ing differences between individual contexts and/or users.

Data cleaning The process of detecting and correcting/removing data items that
are corrupt or otherwise inaccurate. Also called data cleansing or data scrubbing.

Data mining The mechanical discovery of patterns within a (large) dataset. The
term is often abused to mean any form of large-scale data processing. See
association rule mining, cluster analysis, anomaly detection, machine learning.



www.manaraa.com

Glossary 543

Density A measure for characterizing datasets in which ratings have been made by
users or inferred from users. It represents how many of the data items have been
rated, as a percentage, per user, or overall, according to the circumstances.

Developer A human that interacts with the internal representations of software
systems, such as source code or system designs. A developer acts as the user
of various software tools, including integrated development environments and
recommendation systems in software engineering. Developers are also known as
programmers and software engineers. In our situation, we include managers who
may know nothing about the programmatic entities within the software system.

Developer context The context in which the developer is working at a particular
point in time, such as when a recommendation is generated.

Developer profile A set of attributes deemed useful for describing a developer,
typically that will possess similarities to and differences from profiles of other
developers.

Diversity A property of a set of recommendations wherein the recommendations
are not considered trivial variations on each other.

Domain analysis The process of analyzing common terminology, problems, and
solutions over a range of systems that share a common purpose.

Edit location Individual locations within an entity (typically the source code for
a software system) that are modified by a developer to achieve some purpose.
A high-level transformation (such as a refactoring) will be enacted as changes
at individual edit locations, either automatically by a tool or manually by a
developer.

End-user A human that uses a software system through a non-programmatic
interface. The term is used to distinguish users who are not developers.

Enhancement See issue.
Extensibility A property of an item (typically, a programmatic entity) representing

the ease with which it can be extended.
Evaluation An examination of a thing to assess its merits.
Execution trace A record of the execution of a program, typically listing the

methods executed in the order in which they were executed. An execution trace
may also record details of the objects and values passed, as well as metadata
about the execution such as the time at which a method was entered and left and
the thread in which the execution occurred. Statement-level execution traces are
also common.

Expected recommendation The recommendation that ought to be obtained for a
given input from a “perfect” RSSE. In many situations, the expected recommen-
dation must be assumed based on an independent source of information (like
real-world data).

Experiment A disciplined procedure to test a hypothesis, usually under (partially)
controlled conditions. Or the act of following such a procedure.

Explanation A description of why an RSSE has chosen to produce a recom-
mendation, generally presented to the user on demand and in context of that
recommendation.
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Exploration A collection of information about a previously unknown (physical or
conceptual) space. Or the act of collecting such information.

Failure The externally visible evidence of a bug within a software system. A bug
may never cause a failure if the bug is never executed. A failure may occur long
after the execution of a bug.

Fallout The probability that a recommendation system will recommend a false
item. It is equivalent to 1 � true positive rate. See confusion matrix for a general
overview.

False negative See confusion matrix.
False negative rate For binary classification of items, the percentage of the items

predicted to be irrelevant that are actually relevant. It is used as a measure of
quality of classifiers. It can equivalently be interpreted as a probability, rather
than a ratio. The measure is defined as

FN

FN C TN
I

see confusion matrix for the definition of these quantities.
False positive See confusion matrix.
False positive rate For binary classification of items, the percentage of the irrele-

vant items that are predicted to be relevant. It is used as a measure of quality of
classifiers. It can equivalently be interpreted as a probability, rather than a ratio.
The measure is defined as

FP

TN C FP
I

see confusion matrix for the definition of these quantities.
Feature A distinguishing characteristic of an entity, intended to be positive in its

target context.
Feature request See issue.
Field study A study conducted in a real-world setting, as opposed to an artificial

one, such as a laboratory. A field study avoids control but merely observes
phenomena, in the hope of minimizing influence on the phenomena and obtaining
a richer set of observations.

F-measure A single measure that combines precision and recall. (Note that this
necessarily loses information.) The general F-measure Fˇ is defined (for real,
non-negative values of ˇ) as

.1C ˇ2/ � precision � recall

ˇ2 � precision C recall
:

More typically, ˇ is set to the value of 1, producing the F1 measure (also called
the traditional F-measure or balanced F-score); it is defined as
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2 � precision � recall

precision C recall
:

The F1 measure is typically called the F-measure for simplicity.
F1 measure See F-measure.
Fˇ measure See F-measure.
Frequent itemset See association rule mining.
Functional requirement A kind of requirement that focuses on the functionality

aspects of a system, as opposed to the quality properties.
Fuzzy set A set of items for which a special function called a membership function

is defined. The membership function maps each item to a value in the interval
Œ0; 1� that represents the probability that that item is a member of the set.

General F-measure See F-measure.
Generalizability A property of an empirical result representing how well it would

apply to situations other than those explicitly evaluated.
Ground truth Data collected from direct assessment as opposed to indirectly or

remotely, i.e., “on the ground.” This matters as the validity of data collected
through a series of inferences, or indirect interpretation is threatened at each step.
On the other hand, ground truth data is often avoided due to high costs or risks
associated with its collection.

Group recommendation system A recommendation system whose recommenda-
tions are aimed at a group as a whole, rather than individuals.

Heuristic A technique or value derived from experience, experimentation, or
intuition from which a problem can be solved with no expectation of optimality.
Heuristics are often used in situations where execution time is an important factor
and suboptimal solutions are expected to suffice.

Heuristics-based recommendation An approach used in knowledge-based rec-
ommendation systems that uses heuristics in order to derive recommendations.

Human–computer interaction See user interface.
Hybrid recommendation system A recommendation system that combines two

or more recommendation approaches in forming its recommendations, e.g.,
collaborative filtering, content-based, group, knowledge-based.

IDE See integrated development environment.
Information retrieval “Finding material (usually documents) of an unstructured

nature (usually text) that satisfies an information need from within large collec-
tions (usually stored on computers)” [30].

Integrated development environment A software application that provides a set
of software tools for the development of other software. These software tools
are typically integrated by sharing their internal representations of data (e.g.,
source code) and may also communicate directly with each other to reuse their
functionality or to announce events to one another. Integrated development
environments are typically intended to be extensible to new software tools.
Integrated development environments aim to support the developer in their
development tasks, focusing on usability for those tasks.
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Interaction data Data collected from the users of a software system as they
perform events with that system. Such data may be low level, recording
keystrokes and mouse clicks at certain coordinates; or high level, recording
presses of graphical button widgets, bringing a specific text editor to the
foreground, or browsing for information. This data often consists of a description
of the event that has occurred along with metadata such as the timestamp of
the event. Inferring high-level interaction data from low-level interaction data is
a nontrivial operation. Navigation data is a special form of interaction data in
which the interactions (of interest) consist solely of moving between or within
items, such as source code classes.

Invalid See validity [within mathematics].
Issue Constitutes two classes of entities: bugs and enhancements. A bug is a

defect in a software system. An enhancement (or feature request) is a change
that is desired to alter the system for reasons other than repairing a bug, such
as extending functionality. These are grouped together under the generic label
“issue” when it is not known or not important whether one is dealing with
bugs or enhancements specifically. Bugs are also called defects and problems.
Enhancements are also called changes and problems. Issues are also called
problems. See issue report, issue repository, issue management system.

Issue management system A system that permits the recording of an issue report,
as well as supporting the process of triaging, assigning, prioritizing, merging,
and closing issue issues (i.e., the management of issues). An issue management
system operates atop an issue repository.

Issue report Generally a structured report either describing a bug within a software
system or requesting that a change be made; in other words, an issue report
reports an issue. Issue reports are generally managed together, regardless of
whether they constitute reports of bugs or enhancement requests. Issue reports
typically collect metadata about the issue and about the management of the issue.
See issue repository, issue management system.

Issue repository A collection of issue reports, stored in a specific manner, such as
in a relational database. An issue repository is used by an issue management
system to permit issues to be reported and managed through the process of
addressing them.

Issue triage The lightweight analysis of a novel issue report to decide how to react
to it, for example, to label it as a duplicate or of high priority.

Itemset See association rule.
k-fold cross-validation See cross-validation.
k-furthest neighbors A recommendation algorithm that recommends the k items

that are least similar to a specified one (e.g., users that are dissimilar to the
current user).

k-nearest neighbors A recommendation algorithm that recommends the k items
that are most similar to a specified one (e.g., users that are similar to the current
user).

k-tail evaluation See cross-validation.
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Knowledge capture A process of explicitly recording in a tangible representation
the knowledge possessed by a user.

Knowledge-based recommendation system A recommendation system that
models knowledge about users and items in order to reason about which items
meet a user’s requirements. See critiquing-based recommendation system.

Learner See machine learning.
Machine learning A technique whereby a program (called the machine learner or

simply the learner) can adapt according to the data it receives.
Macroevaluation A means of evaluating the quality of a recommendation system

in which individual confusion matrices are populated with the results from
individual recommendation trials. Each confusion matrix can then be summa-
rized with standard measures, and measures of central tendency (such as the
mean) can then be calculated over the individual measures.

Manager See developer.
Metric [Within software engineering] A measure of some specified property of

entities within a defined set. Often, a given metric is intended to have greater
meaning than its definition would automatically give it. A validated metric is
thus a metric for which this greater meaning has been empirically validated to
hold. For example, using a person’s shoe size as a metric of intelligence would
only be valid if we could demonstrate high correlation (or perfect correlation)
between the two.
[Within mathematics] A function generalizing the notion of distance. A metric
must conform to a certain set of properties: non-negativity, identity of indis-
cernibles, symmetry, and the triangle inequality.

Microevaluation A means of evaluating the quality of a recommendation system
in which a confusion matrix is populated with the results from multiple recom-
mendation trials without differentiating them. The confusion matrix can then be
summarized with standard measures.

Natural language processing The automated interpretation of human language.
This is more complex than the processing of programming languages due to a
much greater presence of ambiguity and context-sensitivity in human languages.

Navigation data See interaction data.
Network analysis An analysis of a graph representing a set of entities and some

relationship between them. This can be performed to characterize the overall
shape of the network, to identify local properties, or to make decisions about the
underlying entities or processes that the graph represents.

Noise Random data that does not carry information content but that can obscure
the information content around it.

Non-functional requirement A kind of requirement that focuses on the quality
aspects of a system, as opposed to its functionality.

Novelty The experience of discovering an item that is significantly different from
others already known. Compare diversity and serendipity.

Ontology [Within computer science] The set of concepts that exist within a domain,
and the relationships between those concepts. Note that a taxonomy is an
ontology restricted to only include the subsumption relation (i.e., parent/child).
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Overfitting Use of a statistical model to describe noise in a dataset rather than
the relationship obscured by the noise. This can occur when the number of
parameters in a model is close to the number of datapoints being fit, or when
there has been no differentiation between the data used to derive the model and
the data used to validate the model.

Personalization The delivery of different information (i.e., recommendations)
depending on the target user.

Persuasiveness The capability of a recommendation system to influence a user’s
attitude, decisions, or behavior.

Positive predictive value See precision.
Precision [Within information retrieval] For binary classification of items, the

percentage of the items predicted to be relevant that are actually relevant. It is
used as a measure of quality of classifiers. It can equivalently be interpreted as a
probability, rather than a ratio. The measure is defined as

TP

TP C FP
I

see confusion matrix for the definition of these quantities. A synonymous term
used in other areas is positive predictive value. When the set of items predicted
to be relevant is restricted to those above some threshold n (such as above some
value of similarity) or the size of this set is constrained to n, we can speak of
precision at n.
[Within science and engineering generally] The degree to which repeated
measurements of the same quantity under unchanged conditions agree. Compare
accuracy.

Prediction A statement about the state of some entity derived only in part from the
information possessed about it. Predictions often focus on the future state of an
entity based on its current state and some model of change. Recommendations
implicitly or explicitly predict the utility of the recommended item/action to the
user.

Privacy The ability of an individual or group to selectively reveal information
about themselves, when and if they so choose.

Proactive recommendation A recommendation that is presented to the user when
the recommendation system deems it appropriate, without waiting for the user to
request it.

Program transformation Any alteration or act of alteration of a program, usually
conceived at the level of source code, but that could operate at higher or lower
levels of abstraction.

Programmer See developer.
Quality An imprecise term denoting the fitness for purpose of a product or process.

It may involve both objective and subjective elements, resulting in significantly
different opinions of quality from different stakeholders.

Reactive recommendation A recommendation that is presented to the user only
when the user requests it.
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Reactivity The ability of a recommendation system to provide good quality
recommendations in real-time according to some specified time threshold cri-
terion.

Recall For binary classification of items, the percentage of the items that are
actually relevant that are predicted to be relevant. It is used as a measure of
quality of classifiers. It can equivalently be interpreted as a probability, rather
than a ratio. The measure is defined as

TP

TP C FN
I

see confusion matrix for the definition of these quantities. Synonymous terms
used in other areas are true positive rate and sensitivity. When the set of items
predicted to be relevant is restricted to those above some threshold n (such as
above some value of similarity) or the size of this set is constrained to n, we can
speak of recall at n.

Recommendation An information item estimated to be valuable in a given context.
When the “estimate” is universally accurate, the information item is not a
recommendation, but the correct answer.

Recommendation box The area wherein recommendations are displayed on an
online surface.

Recommendation system A software application that provides information items
estimated to be valuable for a task in a given context, i.e., recommendations.
If the “estimate” is universally accurate, the system is not a recommendation
system, but a system for computing the correct answer.

Recommendation system in software engineering A software application that
provides information item estimated to be valuable for a software engineering
task in a given context. If the “estimate” is universally accurate, the system is not
an RSSE, but a system for computing the correct answer.

Refactoring Restructuring software to alter its internal structure without altering
its external behavior. Such changes are typically performed in order to improve
the internal properties of the software (such as its understandability or extensi-
bility) without breaking external software agents or making end-users aware of
the changes. Refactoring is both the general notion of such changes and specific
transformations, especially when standardized (e.g., a rename refactoring).

Reinforcement [Within RSSEs] A heuristic measure defined by the Suade tool [10]
for the likelihood of the relevance of an entity given its relationship with other
elements, some of which are known to be relevant. According to the intuition of
reinforcement, structural neighbors that are part of a cluster that contains many
elements already in the set of interest are more likely to be interesting because
they are the “odd ones out” in the cluster of elements related to the set of interest.

Relevance The value of an item to a specific user in completing a specific task at a
specific time.

Reporter The user who has reported an issue.
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Representativeness A property of a data item or sample that allows it to stand
in for other items or the general population of interest. Representativeness can
only be defined relative to a specific property or set of properties of interest.
In mathematical terms, a sample could be considered representative if it is an
element of an equivalence class under a pertinent equivalence relation. True
representativeness is often difficult to assess when the population characteristics
are not known.

Reproducibility The ability of an evaluation to be repeated in order to arrive at
the same conclusions. The term is often meant more narrowly as the ability
for an experiment to be repeated by different researchers to arrive at the same
results. An irreproducible evaluation is generally not seen as valuable due to the
possibility that it was conducted incorrectly and thus that the conclusions are not
supported.

Requirement A condition or capability that must be met by a software product or
software development process.

Requirements elicitation/negotiation A collaborative process, involving multiple
stakeholders, of identifying requirements. As stakeholders’ opinions may con-
flict as to the importance or value of individual requirements, negotiation is used
to resolve conflicts.

Response time The time taken by a system to react to an input.
Robustness The ability of a system to cope with faults and failures.
Root-mean-squared error A measure comparing the values predicted by a model

(i.e., a recommendation system) and the values actually observed. It is defined as

sPn
iD1.xi � Oxi /2

n
;

where each xi is the predicted value and each Oxi is the actual value.
RSSE See recommendation system in software engineering.
Satisfiability [Within mathematics] The problem of determining if there exists an

interpretation that satisfies a logical (Boolean) expression.
Scalability The ability of something to accommodate growth reasonably, or to

be adapted in order to accommodate growth reasonably. For example, this can
mean that the growth in execution time does not exceed some bound relative
to the input size. In principle, scalability should also support shrinkage at
reasonable reduction in resource usage, but for many contexts, it is only the
growth characteristic that is deemed important.

SCoReS See source code-based recommendation system.
Sensitivity See recall.
Serendipity The experience of finding an unexpected and fortuitous item. Compare

novelty.
Simulation An imitation of the behavior of some process, usually for the purpose

of studying that process. Equivalently, an imitation of the functioning of one
system by another, usually simpler one.
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Social network A graph consisting of actors (the vertices) and their relationships
(the edges) in which the actors have a social existence (i.e., they will generally
be humans) and their represented relationships will have a social significance.

Social tagging See collaborative filtering.
Software configuration management system See version control system.
Software engineer See developer.
Software product line A set of software systems that share a common, managed

set of features, as opposed to possessing copies of those features.
Software quality metrics Any set of metrics used to measure the quality aspects

of software products, projects, and/or processes.
Sound See validity [within mathematics].
Soundness See validity [within mathematics].
Source code-based recommendation system A recommendation system that

produces recommendations principally by analyzing the source code of a
software system.

Specificity [Within RSSEs] A heuristic measure defined by the Suade tool [10]
for the likelihood of the relevance of an entity given its relationship with other
elements, some of which are known to be relevant. According to the intuition of
specificity, structural neighbors that have few structural dependencies are more
likely to be interesting because their relation to an element of interest is more
unique.
[Within information retrieval] See true negative rate.

Speculative analysis A dynamic analysis technique in which a range of possible
actions are automatically tried, and the estimated quality of the results is used to
rank the possibilities.

Stakeholder An entity (typically a person, but sometimes a group or organization)
with an interest in the process or outcome of a project.

Support See association rule mining.
Systematic error See bias.
Taxonomy A classification of concepts or entities within a domain, and their

parent/child relationships. See ontology.
Test-driven development A software development process in which an automated

test case is written prior to the functionality that that test case is intended to
exercise. The idea has been promoted in various agile software development
methodologies for its potential to define the conditions for completion, and to
avoid writing test cases that immediately pass rather than checking for correct
behavior, which can happen due to the phenomenon of “debugging blindness.”

Text link A kind of navigation aid consisting of textual references, such as
corresponding files and line numbers, e.g., see Chap. 5.

Threat to validity See validity [within evaluation].
Traditional F-measure See F-measure.
Transaction See commit.
Transparency A property of a recommendation that permits the user to understand

why the recommendation has been made.
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Triangulation [Within evaluation] Conducting multiple evaluations, typically via
different methods and/or on different data sources, in order to improve the
generalizability of the findings. Since each method and data source will have its
own threats to validity, the intent is that the different methods/data sources will
differ in their threats to validity, and thus, some threats can be shown to exist or
not exist.

True negative See confusion matrix.
True negative rate For binary classification of items, the percentage of the items

that are actually not relevant that are predicted to be not relevant. It is used
as a measure of quality of classifiers. It can equivalently be interpreted as a
probability, rather than a ratio. The measure is defined as

TN

TN C FP
I

see confusion matrix for the definition of these quantities. A synonymous term
from other areas is specificity. When the set of items predicted to be relevant
is restricted to those above some threshold n (such as above some value of
similarity) or the size of this set is constrained to n, we can speak of true negative
rate at n.

True positive See confusion matrix.
True positive rate See recall.
Trust Reliance on the actions of an entity, such as a recommendation system. Trust

can be established transitively through a recommendation by trusted entity, or
directly through repeated observation of reliable actions. Trust can be lost by
observation of unreliable actions. Believable explanations of behavior can help
to establish trust.

Type I error See confusion matrix.
Type II error See confusion matrix.
Understandability A property that assesses a user’s ability to correctly interpret

the meaning of an item. It necessarily depends on the knowledge, experience,
and skills of the user.

Usability A property that assesses a user’s ability to easily use an item. This
generally includes aspects of understandability.

User An agent external to a software system that makes use of that system. A user
is usually a human being in the software engineering context, but in some other
areas, software agents are also deemed to be users or other software entities.
In the context of recommendation systems in software engineering, the user
is usually a developer; for example, an RSSE residing within an integrated
development environment would target a developer. The generic term user is
taken to include both developers and end-users.

User history See interaction data.
User interface The portion of a software system that supports interaction with a

user.
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User satisfaction The extent to which a user is supported in their task by a
recommendation.

Valid See validity [within mathematics].
Validity [Within evaluation] The extent to which the findings of an evaluation

are well founded and correspond to reality. Every empirical method and every
data source possesses one or more properties (called threats to validity) that may
render findings derived therefrom to lack validity.
[Within mathematics] A property of a logical argument. A valid argument is one
in which the truth of the premises necessitates the truth of the consequences,
regardless of whether the premises are actually true; an argument that lacks
validity is called invalid. This contrasts with a sound argument, which is one
that is also valid, but whose premises are known to be true. Soundness is the
analogous property that deals with the question of whether an argument is sound
or not sound.

Variant See version.
VCS See version control system.
Version Given an entity (such as an entire software system), a version of that entity

constitutes a particular set of changes to it from its original form. Different
versions may coexist to support different purposes, or they may sequentially
supplant older versions, or both. Synonymous terms are revision and variant.
Specifically coexistent versions are also called variants.

Version control system A software system used to record incremental changes to
resources, along with metadata describing those changes, such as the author,
timestamp when the change was added, and a comment made by the developer
who added the change. Version control systems can be subsumed more generally
by the term software configuration management systems.

Wizard of Oz experiment An experiment in which apparently automated respons-
es/recommendations are being faked, either hard-coded in the software being
used to mediate the experiment or manually entered by an experimenter (usually
in secret) during the experiment. (The name derives from a fictional character in
American literature who was pretending to have great magical powers but was
actually operating special effects from a hidden location.)
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